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E2 Parametric identification with Least-Squares method

This exercise is dedicated to parametric identification using the least-squares (LS) method.
During the exercise, an assumption will be made that a structure of the considered system is
known a priori, i.e. we will apply the GrayBox approach. When we use the batched-type LS
estimator all the measurements from the input and output of a plant are simultaneously used
for estimation of model parameters.

1 Static plant identification using LS method

By the static plant we will understand:

• a system with no dynamics, i.e. the steady-state response of the plant appears on the
plant output instantly after an input signal u is applied (with no transient states), or

• a static relation between the input signal and the plant output at a steady state for a
given dynamic plant (a transient response of the plant is not relevant to us).

An exemplary static relation (given as a set of data) between the input and the output of
a plant is presented in Fig. 1. The static plant can be represented by an algebraic mapping
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Figure 1: Static relation between the applied input u and the measured output y of a plant at a steady
state.

(either linear or nonlinear) in the following general form:

u 7→ y ⇒ y = f0(u,p0) + v,

where p0 = [p10 p20 . . . pd0]
⊤ is a vector of true parameters of the plant, f0(u,p0) is a true

description of the plant for the noise-free conditions, while v represents a noise term which is
always present in practical scenarios. The parametrization of function f0(·) can be performed
using various approaches. In this exercise, we will be focused on the linear parametrizations
which lead to a model in the linear regression form , i.e. the model can be expressed as a linear
combination of some parameters pi, i = 1, 2, . . . , d and a chosen base functions:

f(u,p) ,
d
∑

i=1

pi · Fi(u) ⇒ ŷ =
d
∑

i=1

pi · Fi(u). (1)
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Model (1) can be written in the linear regression form as follows:

ŷ = ϕ⊤(u)p ⇒ y := ϕ⊤(u)p (2)

where ϕ(u) = [F1(u) F2(u) . . . Fd(u)]
⊤ is the regression vector depending on a deterministic

input u (through base functions Fi(u)). Application of the least-squares method to equation
errors εn(p) , yn − ϕ

⊤
n (u)p written for the right-hand equation in (2) for n ∈ [1, N ] leads to

the following LS estimator being the unique solution to the parametric identification problem:

p̂LSN = (Φ
⊤Φ)−1Φ⊤y, (3)

where

Φ =







ϕ⊤1 (u)
...

ϕ⊤N (u)






, y =







y1
...
yN






, (4)

and Φ is (from assumption) a deterministic regression matrix depending on the deterministic
input signal u. A confidence level of the estimate1 computed by (3) is strictly related to the
covariance matrix cov[p̂LSN ], which for the case where v is a white noise can be estimated based
on the measurement data as follows:

cov[p̂LSN ] ≈ P̂N = σ̂
2(Φ⊤Φ)−1 σ̂2 =

1

N − d

N
∑

i=1

ε2i (p̂
LS
N ), (5)

where σ̂2 is the estimate of variance of noise v, εi(p̂
LS
N ) = yi −ϕ

⊤
i (u)p̂

LS
N is the equation error

computed for estimated parameters, while d is a number of parameters used in the model.
In the case where disturbance v is a colored noise, the computation of the covariance matrix
cov[p̂LSN ] requires the knowledge of a full covariance matrix of noise v.

1.1 Identification of a static plant.

• File IdentStat.mat contains two sets of measurement data (pairs (u, y)), gathered
from a static plant and stored in matrices DataStatW, DataStatC, where the
first one contains measurements corrupted by a white noise, while the second one
corrupted by a colored noise. Load the data from the file to the Matlab workspace
using command load IdentStat.mat.

• Assuming the following structure of the static model:

ŷ = p1 +
4
∑

i=2

pi
ui−1

(6)

compute the estimates of model parameters using equation (3). The calculations
should be done independently for the data with a while noise and for the data
with a colored noise.

• Plot the measurement data and the identified function (6) on a common figure.
Upon the plots, evaluate quality of the performed identification.

• Verify the influence of the amount of measurement data on the identification qual-
ity (to this aim use different subsets of measurement data).

• Estimate covariance matrix (5) for the case of data corrupted by a white noise and
assess confidence levels for particular estimates of parameters.

1
Remember that p̂N is a random variable!



IAR-PUT: Laboratory of Adaptive Control – E2 3

2 Dynamic plant identification using LS method

Let us consider a following model of a dynamical plant in the discrete-time domain:

A(q,p)y(n) = B(q,p)u(n) + e(n) ⇒ y(n) = G(q,p)u(n) + v(n), (7)

where v(n) = H(q,p)e(n), e(n) is a white noise (by assumption), G(q,p) = B(q,p)
A(q,p) and

H(q,p) = 1
A(q,p) are the transfer function operators representing the control-route and noise-

route dynamics, respectively, while A(q,p) and B(q,p) are the polynomials of degree na and
nb, respectively. The aim is to identify parameters p of the transfer function operator G(q,p)
by using the LS method. The structure of model (7) allows writing the output of the system
(and consequently the equation error) as a linear function of parameters:

y(n) = ϕ⊤(n)p+ e(n), ε(n,p) , y(n)−ϕ⊤(n)p, (8)

where the regressor

ϕ⊤(n) = [−y(n− 1) . . . − y(n− na) u(n− 1) . . . u(n− nb)]
⊤ (9)

is no longer a deterministic function, but a stochastic one (as the result of using the auto-
regression model). Application of the LS method to equation errors (8) for n ∈ [1, N ] leads to
the following LS estimator, being a unique solution to the parametric identification problem:

p̂LSN = (Φ
⊤Φ)−1Φ⊤y, (10)

where

Φ =







ϕ⊤(1)
...

ϕ⊤(N)






, y =







y(1)
...
y(N)






, (11)

whereas this time Φ is a stochastic regression matrix depending on the previous samples of
output y and deterministic input u. In this case, the covariance matrix can be estimated using

cov[p̂LSN ] ≈
1

N
P̂∞ =

1

N
σ̂2
(

1

N
Φ⊤Φ

)−1

= σ̂2
(

Φ⊤Φ
)−1
, σ̂2 =

1

N − d

N
∑

n=1

ε2(n, p̂LSN ),

(12)
where ε(n, p̂LSN ) = y(n)−ϕ

⊤(n)p̂LSN is the equation error computed for estimated parameters,
while d is a number of parameters used in the model. If e(n) is in fact a white noise (i.e. if the
formal assumption of a nature of e(n) is satisfied in practice) and matrix Φ⊤Φ is non-singular,
then estimator (10) is consistent, that is limN→∞(p̂

LS
N −p0) = 0 (convergence with probability

equal to 1).

Auxiliary information regarding the data in file IdentDyn.mat:

• matrices: DataDynW=[u yw], DataDynC=[u yc]

• simulation time: t=0:Tp:100, sampling time Tp=0.05 s

• true parameters of the plant: k0 = 2.0, T0 = 0.5 (unknown in practice)

• applied input signal: u(t) = 0.2 sin(5t) + 0.1 sin(2t) + 0.5 cos(2t)

• method of white noise generation for ARX structure: v = H(q)e, where H(q) = 1/A(q),
hence H=tf([1 0],[1 -exp(-Tp/T)],1), e = 0.1·randn(N,1)

• method of colored noise generation for ARX structure: v = H1(q)e, where H1=tf([1 1.5
1.1],[1 0 0],1), e = 0.1·randn(N,1)
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2.1 Parametric identification of the ARX model structure using LS method.

• Consider the following first-order dynamic plant:

G(s) =
Y (s)

U(s)
=

k0
T0s+ 1

⇒ G(z) =
Y (z)

U(z)
=
k(1− e−Tp/T )

z − e−Tp/T
, (13)

with some unknown parameters k0 and T0, where G(z) is the discrete approxima-
tion model of G(s) obtained using the zero-order-hold (zoh) method. By using the
above transfer function, we can write the discrete-time model of the plant with
operator q = q−1 as y(n) = G(q,p)u(n) + v(n), where v(n) is a noise term.

• Rewrite the plant model (13) in a linear regression form and find the regression
vector and the vector of parameters for the model.

• File IdentDyn.mat contains two sets of measurement data (pairs (u(n), y(n)))
stored in matrices DataDynW, DataDynC, where the first one contains measure-
ments corrupted by a white noise, while the second one contains data corrupted
by a colored noise. Load the data from the file to the Matlab workspace using
command load IdentDyn.mat. Divide the data into two subsets (e.g. in the pro-
portion of 50/50 percent): Zest which will be used for model estimation, and Zval
which will be used for model validation.

• By assuming the ARX model structure perform the parametric identification pro-
cedure of model (13) using equation (10) with data from subset Zest. Calculations
should be done independently for the case of data corrupted by a white noise and
for data corrupted by a colored noise.

• Based on vector p̂LSN , calculate estimates k̂ and T̂ .

• In a common figure plot the measured plant response y(n) from subset Zval and
the response ym(n) of the identified simulated model excited with input signal u(n)
taken from subset Zval. Evaluate quality of parametric identification by analyzing
the plots. Next, evaluate quality of identification by computing the following index

V (p̂LSN ) ,
1

N

N−1
∑

n=0

ε2(n, p̂LSN ), (14)

where ε(n, p̂LSN ) := y(n)− ŷ(n|n−1), ŷ(n|n−1) is the output of the one-step-ahead
predictor, while N denotes now the amount of data included in subset Zval.

• Compute covariance matrix (12) for the case of data corrupted by a white noise
and assess confidence levels for particular estimates of parameters.
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