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Abstract—A general trajectory tracking control solution is
proposed for truly N-Trailer robots comprising a unicycle-like
tractor and arbitrary number of passive trailers interconnected
by sign-homogeneous non-zero hitching offsets. The solati
permits either backward or forward motion strategy of a vehicle
preserving location of a guidance point on the last trailer. The
presented control law is modular and highly scalable with repect
to a number of trailers thanks to employing a cascade-like aatrol
structure. Stability and robustness analysis of the closetbop
system provides sufficient conditions of asymptotic and pretical
tracking for a wide set of the so-called segment-platooning
reference trajectories containing both constant-curvatue and
varying-curvature motion profiles. Efficiency of the contrdller and
its robustness to parametric uncertainty have been illustated by
experimental results obtained for a three-trailer vehicle

Index Terms—trajectory tracking, cascade-like feedback con-
trol, N-Trailers, off-axle hitching

|. INTRODUCTION

tracking control laws have been devised for robots witlcgyri
limited number of trailers — typically forV. < 2. To the
author’s best knowledge, the only trajectory tracking ooint
method elaborated for truly nSNT vehicles have been prapose
in [5] employing a cascade-like concept (see also [28])eind
pendently investigated in [17]. The cascade-like apprdesh
revealed its big potential, however the authors of [5] fetsd
their considerations only to the special case of backward
tracking of constant-curvature reference trajectoriesiasng
omni-directional kinematics of a tractor and common pesiti
lengths of all the hitching offsets equal to the trailer ldrsy
Local stability analysis provided in [5] was limited only to
the case ofV = 1 in the task of straight-line tracking. As a
consequence, one may have a strong feeling that the pramisin
control approach proposed in [5] has not been investigated
deeply enough to reveal its real application potential.

The main objective and contribution of this work is exten-
sion, generalization, and formal analysis of the cascikae-I|

The N-Trailer vehicles (N-Trailers) play increasingly im+rajectory tracking control system for truly nSNT robotséd
portant roIe. in contemporar){ g_round transportation due 8?1 the concept presented in [5]. A new generic description
the economic and usage—erX|b|I|ty reasons. One may predp_gnowed by stability and robustness analysis of a closepl
that the recent trend for automation of guidance systemsgpstem provide new insights into advantages and limitatin
commercial vehicles will find applications also in the domaithe proposed control approach. By removing restrictions im

of articulated vehicles which are especially difficult totwl.
Due to specific properties of N-Trailer kinematics (inveated
e.g. in [1], [8], [10], [12], [13], [26]), feedback controlegign

posed in [5], applicability of the controller is extendedt®NT
kinematics admitting various lengths of trailers and hitgh
offsets. By introducing the so-callesegment-platooningef-

for these systems is generally non-trivial. Most contrduso grence trajectories, sufficient conditions for asymptatic

tions proposed in the literature so far foaly N-Trailers (i.e.

practical tracking are provided for both constant-curkatu

admittingarbitrary number of trailers) concern the time-nonyng varying-curvature trajectories. This work builds ugoe

critical tasks like the set-point stabilization and pathdwing
(see for instance [2]—-[4], [9], [14], [15], [18], [21], [24]27]),

conference paper [16] and partly on the results presented in
[15] for the path following task. In contrast to [15], the oemt

or address the control problems for the differentially flat s paper concerns the trajectory tracking problem, and fezase
called Standard N-Trailers (SNT) equipped solely with afea the modularity and robustness of the proposed control syste

hitches, see [7], [19], [22], [24], [27].

In this work, the time-critical trajectory tracking probte
is considered for truly N-Trailer robotic vehicles equidpe

with a unicycle-like tractor and a number of trailers with

II. N-TRAILER KINEMATICS AND PROBLEM STATEMENT
A. Kinematics of N-Trailers

non-steerable wheels interconnected in a chain by passivegnfiguration of the N-Trailer can be uniquely determined
rotary joints. We focus on the N-Trailers equipped solelly the vector (see Fig. 1)

with off-axle hitches. Following classification proposed 8],

let us call the vehicles from this class the non-Standard- ¢ 2 (3, . By Oy 2y yn]| = {ﬁ} e TV xR3, (1)

N-Trailers, or shortly: the nSNT vehicles. Essential diffi-

qan

culties with nSNT vehicles come from a combination O&\lhere/g and qan denote, respective|y, the joint-ang|e vector

three features of their kinematics: joint-instability iadkward

(the shapeconfiguration) and the posture vector of the last

motion, nonminimum-phaseness in forward motion with posrajler called theguidance segmenPosturegy comprises the

itive hitching offsets, and the lack of differential flatses

trailer-body orientatiordy and position coordinatesy, yy

N > 1. Combination of these features makes nSNT kinematig$ the guidance pointP. Angularw, and longitudinaky ve-
an especially hard-to-control system. Numerous spee@lizjocities of a unicycle-like tractor are treated as compdsien
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the vehicle control inputty = [wo v] T. N-Trailer kinematics
is characterized by two kinds of parameters: trailer leagth
L; > 0 and hitching offsetd.;,; € R,i=1,..., N. We adopt
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B. Control problem formulation

,,?\wo The motion task under consideration will rely on guiding

/ 90 the last trailer of a vehicle towards and then along a time-
! parametrized reference trajectory defined for the guidance
( ﬁiﬁ%ﬁﬁm segment, guaranteeing avoidance of the so-called jaakknif

Kinematics) effect in vehicle articulatiorts
nSNT Let us introduce the reference configuration trajectory

vehicle L6 a-(t) 2 (8] (t) gk, 1) € TV x R (6)

N Xy which consists of the referencghapetrajectory 3,.(t) and
the referencguidancetrajectorygy.-(t). Following the above
formulation of a motion task, we complement kinematics
(5) with outputy £ gy = [03xn Isxs3]g, and define the
corresponding reference output (guidance) trajectory

Fig. 1. Kinematic scheme of the nSNT robot in a global frafaé”, y}.

the sign convention of hitching whete,; > 0 if the ith joint

is locatedbehind the wheels-axle of théi — 1)st segment,

while Lj; <0 in the opposite case. _ Y (t) 2 qn,(t) = [On,(t) zne(t) yne ()] €R3. (7)
We will consider the N-Trailers satisfying assumptions:

Al Viec{l,...,N} Ly; #0, .

A2. LypiLp;>0forallije{l,... N}, Cl. gn.(t) = G(gn(t))uns(t),

A3. Vie{l,...,N} |Lyp| < L; if Lp; <0. C2. ¥Vt 20 [Jun, (1)l # 0, .

Al restricts our interest to the nSNT vehicles which argS: 7t =0 l[unr(ff < tr < oo, [l (t)] <oo,

not differentially flat if N > 1. A2, dictated by stability Whereuy, = [wy, vn,]" € R? is the reference (guiding)

conditions explained in Section IV, assumes the so-call¥glocCity alonggy.(¢). C1 imposes nonholonomic constraints

sign-homogeneous hitchinghere all the hitching offsets have©n the reference trajectory makingaidmissibleby satisfaction

a common sign (all are positive or negative but can ha@ unicycle-like kinematics (2). Condition C2 reflects a geal

different lengths). A3 comes from obvious mechanical raaso Persistent excitatiorcondition for trajectory _(7), Where_as C3
Key properties of nSNT kinematics utilized in the sequel rélSSUmes boundedness of reference velocities and aceierat

sult from treating the particular vehicle segments as wgy alongan.(t).

Assume that (7) satisfies the following conditions:

(hereafter we will use the notations= sin a, ca = cos ) Since nSNT kinematics is not differentially flat, it is
T generally not known (except some particular cases) how
4 = Glg)us, Glg) 2 {1 0 0} (2) to explicitly find the reference shape trajectosy () =
0 cb; o [Bir(t) ... Bnr(t)]T € TV corresponding to reference guid-
wheregq; = [0; z; 1:]T € R3 denotes a posture while; = ance trajectory (7). One may compute the associated referen

lw; vi]T € R? is a velocity vector of theith segment. The shape trajectory as a response of the exogenous system
direct and inverse transformations of velocities betweey a . ) @ N
two neighboring segments result from equations (see €]g. [8 Br = S3(Br)uor = S5(6r) H ijl(Bjr)uNT (8)

—Lnicg,  Lsgp; J=1

. — L‘L ? L7, g . — . . . . . . . . .

Ui = { Lyi SB; ch; } ui-1 = Ji(fui-t - (3) with reference inputuy,.(¢) which is known a priori or can
Licg, L be explicitly determined upon time-derivatives of (7). Tka

w1 = [%—isﬁ-z L}cﬂ l} w; = J; (B, (4) to the cascade-like control approach applied in the sequel,

computations of reference signals (8) will not be required.
where the inverse matrixi‘l(ﬁi) is well determined for any It is sufficient to assume that a solution of (8) exists and is
B; under assumption Al. Using (2) and (3), one can exprassunded.

kinematics of the N-Trailers as a drift-free system (seé [8] Introducing theshape-error3 = [Bl BN]T and the
- <TT (B . guidance-error(output-error)ey = [eg e, €,] " as

T ~
¢ B 2 B.(1) - (1) en(t) £ qn.(t) —an(t). (9)
{ﬁ } — [ Se(8) } ug = T Tn(Bx)Th_,(B) uy, (5) One formulates the trajectory-tracking control (TTC) desb.

B Definition 1 (TTC Problem)For nSNT kinematics (5), sa-
. Sla) chJIIEVB()@) tisfying assumptions A1-A3, find a bounded feedback control
I (B law uo = uo(q,(t),q(t),-) guaranteeing thaB(t) — 0 and
en(t) — 02,, ast — oo, where0s,,, = [2um 0 0]" is the
' zero-setdefined for anyu € {0, +1,+2,...}.

whereT;(5;) £ I — J;(3;), I € R?*2 s the identity matrix
le(ﬁ) £ Jl(BZ)Jl(Bl)! and CT £ [1 0], dT £ [0 1]
Worth to note that system (5) under assumption Al is notlin the literature, the jackknife effect is explained in wais ways. For
diﬁerentially flat for N > 1, that is (5) cannot be transformedhe purpose of our considerations, the jackknife will bearstbod hereafter
. h hained f L ’ he Standard N-Trail as motion conditions where at least two neighboring vehsglgments have
'n_to the chaine (_)rm n _ContraSt to the Standar -lral ero':hgitudinal velocities with opposed signs (when exprdsisethe particular
widely addressed in the literature [23], [24]. segment-body frames), i.e;_1(t)v;(t) < 0.
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Remark 1:Thanks to introducing the zero-sét,. one possible to meet (10) for circular guidance trajectoriesne¥
enables a wider class of control laws for a problem solutiofg;,| > 5, which may be acceptable in some applications.
As a consequence, by writirgy = 02, for 4 = 0 oneunder-  The second conclusion comes from equation (16), upon
stands a single poirty = 0, while the expressioay = 02, Which one can find that (local) asymptotic stability of eduil
for 4 = 0,41,+2,... means thaky is equal toany point rium 3, requwes“ Lr < 0. It means that th@ecessary S-P
from the countable set of poin{®,012,, 014, ...} conditioncan be formulated as follows

[Il. S-P REFERENCE TRAJECTORIES SQN(vi-1r) = —SQMLpi) Vi=1,....N, (18)

Following the concept of the so-called segment-platooniNgiere sgi) is a sign-function. Although the necessary S-P
reference paths, introduced for the first time in [15], letondition (18) has been deduced for the constant-curvature
us define a subclass sfegment-platooningS-P) reference guidance trajectories, it turns out to be valid also for more

trajectories (6) which satisfy theufficient S-P condition general trajectories as will be shown in the next sectiorys. B
combining (18) with (10) one may write th®&-P condition
Vt>0 'Ui—lr(t)'vir(t)>oa i=1,...,N, (10)

» SgNv;—1,) = SQM(v;;) = —S@N(Lp;) Vi=1,...,N (19)
where reference velocities,.(t) can be found by recurrence
application of (4)w;,(t) = [0 1]- HJ i d Y(B;r(t))un,(t). imposing additional restriction on the reference guidatnae
Inequality (10) determines a requwement in which the rrefdectory, which permits the backward reference motion ofily i
ence longitudinal velocities of any two neighboring segteenlri > 0 or the forward reference motion only i, < 0
shall be non-zero and shall have the same signs along faeall ¢ = 1,..., N (condition (19) requires satisfaction of
reference trajectory defined by (7) ag(t). assumption A2). Relaxation of this limitation is possibte t

The S-P trajectories do not force the so-caljadkknife Some extent (see Section VI) thanks to robustness property o

effect in vehicle articulations. To clarify this property letthe closed-loop system addressed in Section V.
us investigate a special subset of reference configuration
trajectories corresponding to the constant-curvatui(ireear IV. MODULAR TRACKING CONTROLLER

and circular) guidance trajectorigs;,(¢) characterized by the  The control concept is based on the inverse relation (4),
reference velocityu, = [wn, vn-]" = const. Let us write \yhich applied recursively for = 1,...,N allows us to
the ith row of the exogenous system (8) as follows write wg = H;V:l ijl(ﬂj)uzv- This p_urely algebraic equation
for = —wiel1 4+ (Li/ Lni)oBy) + v (1/ LS, (11) feflects how velocityuy of the guidance segment can be
— wi 1y [1+ (Lni/Lo)CBor] = vi1r(1/ LS80 (12) y tractor inputy in the nSNT kinematics. Therefore,

let us propose the following cascade-like control law
For the considered constant-curvature guidance trajether
angular velocitiesw;, = wy, = const and longitudinal uo(B,®) = {WO B, ® } HJ d(en,t), (20)
velocitiesv;,. = const for all: = 0,..., N. By inspection

of (12), it can be checked that the steady reference angle
Where<I>(eN,t) = [@w(eN,t) @v(eN,t)] ' R3 XRZO — R?

Bir :Atanz(SBiraCBir) € [~m,m) (13) is some feedback control function which depends on the
SBir = Wy (Livi_1r + Liniviy )/ (024, + w3, L3 (14) guidance-error defined in (9). To keep generality of corrside
-SSR SR 2 2 12 tions, we will not specify here any particular form®f ey, t);
Cir = (Wirviciy = Wi Lilini) /(i1 + @er L) (19) assume only that it has three key properties:
determines possible equilibria of joint-angle referenge dp1. v¢ >0 || ®(ey(t),t)]| < ¢ < oo,
namics. Linearization of (11) around the working poinp2 v > ®(02)r, 1) = unr(t),

(Bir, wnr, vir) gives the approximated dynamics P3.Vt > 0 un(t) = ®(ex(t),) makesey = Ogur
. Vi1, 02 +WN L2 B the uniformly in time asymptotically stable equilibrium
Bir = I T oy o (Bir = Bir). (16) (equilibria) of guidance-error dynamics (cf. (9), (2), C1)
7 i*lr Nr+hi
Upon (13)-(15), one may observe that en =((en,t) (21)
Bir € (_g’ g) = VipVi—1p > WZQVrLiLhiv (17) WhereC(eN’ t) = G(qu)uNr_G(QNr_eN)¢(6N, t)

Property P1 indicates boundedness of control functian
while ;. € [~m; —Z] U [§;m) otherwise. One may say thatP2 guarantees thab is well determined along the reference
inequality in (17) represents a (conservatigajety condition guidance trajectory (i.e. foex (t) = 02,,) and corresponds
preventing the jackknife effect in thgh articulation of a ref- there to the reference guiding velocity. P3 means that tiec
erence vehicle. For rectilinear guidance trajectosigs = 0, plication of ® (e, t) into kinematics of the guidance segment
and (17) reduces to condition (10). For circular guidandby forcinguy(t) = ®(en,t) in (2) for i = N) guarantees
trajectories, (10) is a necessary (if,; > 0) or sufficient asymptotic tracking of the reference output trajectory i)
(if L,; < 0) condition for satisfaction of inequality in (17).the sense of Definition 1. Thu® (e, t) represents one of the
Therefore, one may treat (10) as a less conservative condittracking control laws presented in the literature for unley
for the jackknife effect avoidance in the sense, that it ii6 stkinematics (see e.g. [6], [20]). Properties of functi@nwill
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Gty whereBN £ [3; Bi11 ... fn]T. Linearization of (23) around
e . (. ; : .
otlt;{k%;p D(e,,t) - u,(B2)| ont |y the equilibrium yields the approximate shape-error dymami
controller
£ ievel translfor- ki ti i ~ ~
it mion ematic B = AB,un)B + B(B,)®, (25)
-li ﬁ inner | B . . .
gascade like modular : l°"P | where A(3,, uy,) is upper-triangular with diagonal elements
outer loop

aii:vi_lr/L;“- for i=1,...,N. (26)

Fig. 2. Block scheme of the proposed cascade-like contrstiesy. System (25) can be understood as the (approxiniam)r

dynamicsof the closed-loop system. Treating in (25)

as a perturbing input vanishing in time, one may analyze

gl){namlcs (25) under perfect output-tracking conditionereh
en = 0, implying ®(¢) = 0 (see (22) and P2). Now,

determine both the value(s) pfand the basin(s) of attraction
for point(s)en = O2x-

Note that (20) defines the cascade-like interconnecti
of the outer-loop tracking controlle®(ey,t), and the
inner loop velocity transformation in the form of product 5:A(ﬁr,um~)5 (27)

THB1) ... N (Bn) evaluated at the current shape configu-
ratlon of a vehlcle A general scheme explaining the consi@Pproximates thezero-dynamicsof the closed-loop system.
ered control structure is shown in Fig. 2. Worth emphasizirfggenvalues of matrixA correspond to (26) which become
modularity and scalability of the control structure whichiegative under the S-P condition determined by (19):
respectively, result from applicability of various furatis SONvi—1r) |vi—1r| (18) —

|U’L 1r|
®(en,t) in the outer-loop, and from the simple inner-loop Gii = Lo Lo - Ll = % (28)
. . . Sgl’( hz)l hz| | hz|
velocity transformation where a number of trailers affemity
a number of matrices used in the product. wherea = min;eqy . ny {infi>o #(t) > 0 is strictly

Theorem 1:Cascade-like control law (20), with outer-looppositive for the S-P reference trajectories thanks to theteac
control function® (e, t) possessing properties P1-P3, solveigequality in (10). We must separately consider two possibl

the TTC Problem locally in a neighborhood 68,ex) = cases: (1) whenuy, = const, and (I1) whenuy, = up, ().
(0,02,-) for the S-P reference trajectories (¢) satisfying In case (I),8, = const, thusA(3,,uy,) becomes time-
C1-C3 together with (19) when: invariant and local uniform exponential stability ¢f = 0
() an-(t) =0 = wuy, =const, or results directly from (28). In case (ll), one has to further
(1) an(t) Z0if VE >0 |[un.(t)] <6 and|@n.(t)]| < investigate properties of matrid (8, (t), un,(t)) = A(t)

09 for sufficiently small constants;, §; > 0. and its time-derivatived (¢). One can observe, by taking into

Proof: Since this part is analogous to the analysis pr@ccount the forms of components (26) under assumption Al,
sented in [16] (and partly in [15]), we will recall here onlythat || A(t)|] < A < oo for all t > 0. Furthermore, it can be
main reasoning stages helpful for subsequent considasatioshown (using (26), A1, C3, (8), and (5)) that a spectral nofm o

First note that boundedness of control vector (20) directlst is bounded, i.eYt > 0 [|A(t)|| < N (¢101 + (202), where
results from property P1 and from boundednes|$.dff (B85) || (1, (o are some finite positive constants, see [16]. Ensuring
underassump'uon Al. Second upon (3) and (20) one can wiitat §; and J, are sufficiently small the right-hand side of
uy = H. (ﬁ,)]_[ “1(B;)®(en,t) = ®(en,t). the latter inequality can be made small enough to satisfy the
Thus, appllcanon of (20) makes the guidance segment movesinfficient condition for (uniform in time) asymptotic stétyi
a way as it would be directly controlled by functidn(e,t). of the LTV system (27), see [25], [29]. [ |
According to P3, one concludest > 0 |en(t)]] < oo Remark 2:Matricest‘1(ﬂj) in (20) make the closed-loop
anden(t — T) — 09, for T € (0,00) and anyp € system sensitive to a measurement noise corrupting the oute
{0, +1,+2,...}. The particular value(s) gf and the basin(s) loop if hitching offsets are very small (cf. [17]). Sensity
of attraction of point(s)0.,. depend on properties of thecan be attenuated by usmg artificially increased valués off
particular function®(ey, ¢t) applied in the outer loop. in computations ot/ 1(B;) at the expense of only ultimate

Next, we shall investigate behavior of the shape-error dipoundedness of tracklng errors (see Sections V and VI).
namics. Define the outer-loop control difference

‘i)(t) £ un,(t) — (I)(eN(t)’t)'

By taking a time-derivative of3 defined in (9) and utilizing
(5), (8), and (22) one can write the shape-error dynamics

(22) V. ROBUSTNESS TO PARAMETRIC UNCERTAINTY

We are going to investigate stability robustness of the
closed-loop system to parametric uncertainty of the vehicl
model. To this aim, let us introduce the approximated matrix

B =B —Ssp I (Bjr = Bj)(une — @) (23) G105y 4 _%Cﬂi 7, Li & L 29
H me i (B lLL‘sﬁi LCBi I E ks

which possess the equmbrlum 48 = 0, = 0). Closer where p; > 0 and py; # 0 determine uncertainty of model
investigation of (23) reveals its upper- tnangular formemd parametersL and L;,; with respect to the nominal (true)
theith row,i =1,..., N, can be represented by equation values. By direct computations it can be checked that

Bi = fi(BY, B, uny) + gi(BY, Br, ®) (24) I8 = I NB) + Ai(Bi, Lni, La), (30)
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whereL; 2 [; — L; and Ly; 2 Ly; — Ly,; are the parameter where M = H;:N M;, D= Hj.vzl D;(Lnj, Ly), [mg o DN
errors, while the perturbing matrix denotes théth mixed product ofV terms comprising constants
i I -1 f o3 my and functionle(th,Ll) with indexes from set§,§ and
A, = [pth;“” ( hi = Fhi 1) cBi oniLZ, niSBi (31) Z}, respectively. SinceD; (th, j) and D;(Ly;, L;) are of
LiSB; 0 the form (32), the bounaH RY x RY — Ry is a function
has the norm bounded by a non-negative function, that is, continuous near zero, and(L;, — 0,L — 0) — 0.
Using (33), the guidance-error dynamics (21) takes the form
V1|Lh1| + |L | . F F
+ | Li| =: Di(Lns, Li), (32) ,
Lh’i| EN = C(eN7 t) + d(€N7 t)a (37)

uherey i) = 0l finfe (spon AL WhleD:: R here ey, () = ~Glay, — ex)H(8, Ly, Lyblex. 1) i
>0 IS continuous in a neighborhood of zero (0, 0) the perturbation term of nominal dynamics (21). Since in

oS s b eSOt Sesui ot Shenerlas,. ) 7 0, w0, canno be esed
proxi ! u ! s an equilibrium (equilibria) of (37). Although, we can sho

fﬁ?\?epét(i; ?enr(:npshlz,¢ L LFor colrjcrsenezs Wz WIHEISO US&he ultimate boundedness of errex (t). Recalling property
w = [Lne - Lan] La LT by e upper bound (36), and the form of maif-) (see

A. Stability robustness analysis for guidance-error dyiwam (2)) we get

Under conditions of uncertainty, we need to replace nomlnalw >0 || d(en(t),t)|| < GH(Ly, L) =: d(Ly, L), (38)
equatlon (20) with its approximated counterpagt(3, ®) = N

Al <

H _, J; ' (B;)®(en, t) which allows us to write whereG is the upper bound df G(*)||, while d : RN xRN —
1 1 R is a function continuous near zero, a@L;, — 0, L —
uy @ H J;(8;)uo = H J; (8 H B(en, 1) 0) — 0. Sinceey = 09,, constitutes the (unlformly in

time) asymptotically stable equilibrium (equilibria) odminal
1 N dynamics (21), one can use Lemma 9.3 formulated in [11] to
(30) -1 PooT state what follows.
= Ji(B;) | |15 (Bj) + Aj(By, L, Li)|®(en, t) I

jgv T J:l_[l 7 N Corollary 1: For sufficiently smalk(L;,, L), corresponding
— B(en,t)+ H(B, Ln, ) ®(en, 1), (33) to sufficiently small‘ihi‘ and|L; ., N, and for
sufficiently small|| ex (0)|| the solution of perturbed dynamics

where matrixH (3, Ly, L) results from the appropriate sum : . : L g
of products of matriced;, J—', andA,, for i .....N, (37) is ultimately bounded (uniformly in time) satisfying

3

andH(@, 0,0) = 02 for all 3. Upon equation (33) one can lex®)| < &(|ex(0)],t) for t € [0,7.), (39)
alternatively write N lex ()| < re(d(En, L)) for ¢ € [T, ), (40)
H(B,Ly, L H J;(B;) H I (34) whereT, > 0 denotes a finite time instarg, is a function of

= classK L, while k. is a function of classC.
which can be further reformulated as (omitting the arguslent Remark 3:A maximal admissible magnitude @i L;,, L)
1 [ W and || en (0)]| guaranteeing boundedness (39)-(40) essentially
H— H J; H J 1A HJ 1 depends on the properties of functid(ey,t) applied in
i the outer loop, see [11] pp. 347-350. In a special case, if
®(ey,t) nominally (i.e., forL; = 0, L = 0) ensures global

1 (2% 2 N
B } . exponential stability ofey = 0, the magnitude ofl(L;, L)
- H i Z Ci Zl ’AZI) H Ajls (35) can be arbitrarily large.

Jj=1

where "2 2 C (J21 Az represents the sum of all the
mixedproductsC; omeatncesJ ; andA21 with indexes

from setsZ,C andZ;, respectively, whrch appear in the produc&u

B. Stability robustness analysis for shape-error dynamics

For the case of parametric uncertainty, let us define the
ter-loop control difference as follows

H (J‘ Aj). Assuming now that for alls; € T
hold ||J (ﬁ7)|\ < Mj and || J;1(8))]] < my for some  an(t) £ un(t) —un(t) (41)
finite constantsMﬁm] > 0 (see definitions (3)-(4)), and by (33) (22) =
recalling (32), one can assess upon (35) what follows = un,(t) — [I + H|®(t) = @(t) - H2(t),
which reduces to the nominal outer-loop control difference
| H| < H M; Z H Ci( Iz 2 Az + HD (22) in the case of no uncertainty (i.e., f6f = 0). In the
uncertainty conditions, one shall rewrite (23) in the form
2N 2
<M | Y [[meoD)Y +D| = H(LnL) 36)  j-4, - 543 H LB (uny — @ + H®),  (42)

i=1 Zi . =1
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where 3, @ Sﬂ(ﬁr)]'[ 1 (Bjr)un,, while J 1(;) boundedness gB(t). According to (48) and by utilizing (44),

results from (29). Upon the form & 3(3) defined in (5) the (49), (46), and property P1 one can show that
ith row of (42) can be written as (omitting the arguments):
. PilB.0)] < |9: (Bt B(0)] + |vi(B,t, B (1))
ﬁ Bzr_c [I J H J HJ L. UNT—(I>+H(I>) gwlmZH@H—i—qu@E(ih,i) =D (i,ih,i) (50)
Jj=1—1

N N wherem; = HN m;, while w; > 0 is a finite upper bound
; T -1 J
= Bir —w; H J; H H (un, — @+ H®) of || w;||. Upon definition (22), condition C3, and property P1
=N j=1 holds || ®|| < (@, + ¢) < oo, thus all the terms on the right-
hand side of (50) are bounded ensurin¢) < co. It is clear

j=i

(34) 5 T -1 z - .
=" Bir —w; HJj I+ H] (un, — 2+ H®P) that ,(0,0,0) = 0. Moreover, ®(t) (2:2)~‘I>(eN(t),t) and
= ®(02,,,t) = 0 upon property P2. Thug,(®(¢),0,0) — 0 as
where w; := ¢'[I — J;] € R'™? is the row-vector of t — T, T € (0,00), due to asymptotic convergeneg(t) —

trigonometric polynomials, whiled = H (3, Ly, L) is the 02, in the nominal case. As a consequence of (50),

matrix introduced in (33). By writing; = £;- — 5; and . o
recalling that3;, = ¢ [T — J;(8:r)] TI,_; J; " (Bjr)un, one Vt >0 [lp(B,t) < /Pl +... + D% = p(®, Ly, L)
can observe that under uncertainty conditions and the upper boung(0,0,0) — 0. Since 3 = 0 is the
51. — fi(/ész Br,uny) + gi( B, ®) + yz(ﬁ Br,un,, ®), locally (uniformly in tim§) expopentially stable equiliobm of
(43) nominal zero-dynamic8 = f(3,t) (approximated by (27)),
wherefi (BN, 8., un,) andg;(B8Y, 3., ®) exactly correspond one can use Lemma 9.3 from [11] to state what follows.
to the terms from nominal dynamics (24), see [16], while  Corollary 2: For sufficiently smalp(®, L, L), correspond-

Vi B, By e, ®) = —w] Pu(By — B, I, L) (unr — ®) ing to sufficiently small|®||, | L/, N,
(44) and for sufficiently small|3(0)|| the solution of perturbed
is the perturbing term depending @(t) and matrix dynamics (47) is ultimately bounded (uniformly in time)
satisfying
HJ (Bir = BHORI+H()L (45 3(1)) < & (180)I1t) fort € [0,T5),  (51)
According to (36), and recalling the upper bound of the 1B < %5 (ﬁ(q)’L’“L)) for ¢ € [T, 00),  (52)

norm || J;7'|| (see Section V-A) one may assess whereT > 0 denotes a finite time instangs is a function

_ mx = AP, 57 7 f classKCL, while k3 is a function of classC.
P)|| < m;H(Ly,, L)[2 + H(Ly,, L) =: P,(L,, L), (46) ©° ’ 8 )
I Bill < i (Ln, L)[2 + H(Ln, L)) (Ln, L), (46) Remark 41f a particular form of control functior® (e, t)
wherem; = H;Vzmj, while P, : RV x RY — R is a is considered, it may be possible to formulate additional

function continuous near zero, adti(L;, — 0,L — 0) — 0. conclusions on a magnitude || in (50). Namely, if for the

Under parametric uncertainty the guidance-ereoy(t) particular®(ey,t) the norm of®(t) 22) un,(t) — ®(en,t)
|s only ultimately bounded. Thus, in this case generaliyan be upper bounded by sorkieclass functions, (|| ex||),
® # 0, and one must keep considering the non-zero ternen one can utilize result (40) to state that
9:(BN, B,, ®) in (43). Sinced, () andu . (t) are the explicit
functions of time only, one may write (43) far=1,...,N 1@l < kol enll) < kg(ke(d(Ln, L)) =: ¢(Ln,L) (53)

as whered : RN x RY — R is a function continuous near

. (B + p1(Bb) } zero, andgb(Lh —0,L — 0) — 0. As a consequencg; =
: N C Y|

B

pi(Ly,, L) andp = p(Lh, L) become the continuous near zero
functions of parameter errors, apdL;, — 0, L — 0) — 0.

F(B.1)+p(B,t) = [ :
IN(Bt) + pn(Bit)

where the resultanth perturbation term
V1. EXPERIMENTAL VERIFICATION OF THE METHOD

pi(B;t) = gi(B, 1, (1)) + vi(B, 1, @(t)) (48) Control performance has been verified with a three-trailer

with nS3T vehicle with adjustable hitching offsets and constant
trailer lengthsL; = Ly = L3 = 0.229m (see Fig. 3). The

5, & T -1 5 & vehicle tractor was equipped with two brushless DC motors
9:(B, 1, ®(1)) = w; HJ’ (Byr(t) = B5)®(1) (49) (50W, Maxon EC 45-flat with gearboxes 47:1) closed with
the PI-type speed control loops used for the two actuated
andui(B,t,ti(t)) determined by (44) depends on the nominalheels. Joint angles were measured by absolute 14-bit en-
outer-loop control differenc@(t). Since in generab(0,t) # coders (Hengstler AD36). Robust estimation of the lasterai
0, we cannot treaf3 = 0 as an equilibrium of perturbed postureqy was possible thanks to the fusion of a software
dynamics (47). However, we can still show the ultimatpredictor estimate (computed with frequencyl6f) Hz) with

j=i
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e
i

¢ trailer 1
passive & nt

limitations imposed by assumption A2 while simultaneously
preserving acceptable control performance.

Results of experiment EC show, on one hand, how the small
absolute values of hitching offsets increase noise seitgiti
of the closed-loop system (see increased oscillationsyy.
On the other hand, they illustrate how one may intentionally
Fig. 3. The laboratory-scale articulated vehicle used @ekperiments. utilize robustness property to attenuate the resultansenoi
sensitivity and obtain acceptable tracking performanceals
possible by using approximated matrices (29) in the inn@p lo
with artificially increased absolute values bf; = —0.016m

Ly
th adjustable

& e

trailer 2
passive segment

er 3
 segment.

TABLE |
CONDITIONS PRESCRIBED FOR THE PARTICULAR EXPERIMENTS

[Exp.| Reference trajectory [ Offsets [m] | Conditions ] for 4 = 1,2,3 which correspond to uncertainty coefficients

Ea | %3r() = 0.4sin(0.11) fﬁ; - 18:832 Egqu'cvglrd pr1 = pre = prs = +2.0. This approach turned out to be
yar(t) = 0.3sin(0.158) | """ _ (030 tracking effective, however, only if the vehicle motion was initzdd
ran(t) = 0.4cos(0.11) Ly, = +0.048 | backward in a sufficiently small neighborhood of the reference triagec

EB ?7‘( 1) — 0.35in(0.1¢) Lps = +0.048 | tracking
Yarilt) =1 : Ly3 = —0.008 | violating A2

Ty = —0.008 | uncertain VIl. CONCLUDING REMARKS

ec | () = 0.dco S0.050) 1 s = —0.008 | forward The cascade-like control framework presented in the paper

y3r(t) = 0.35in(0.05¢) Lpz = —0.008 | tracking

provides a highly scalable and modular solution to the traje
tory tracking control problem for nSNT kinematics, general
a vision estimate obtained from an external calibratednuisi izing in various directions the 0rigina| solution presmfer
system (PC + camera uEye UI-1240SE-C with resolutiqq particular case in [5].

1280x1024 and sampling 25Hz) employed for recognition of \Worth to emphasize relative application simplicity of the
a LED marker mounted on a top of the guidance segment (sfethod irrespectively of a number of trailers present in a
Fig. 3). The cascade-like controller was implemented on th@hicle (scalability), and its modular character wheredhter-
on-board floating-point DSP processor (TMS320F28335) withop feedback controller can be flexibly selected/replaced
sampling frequency ol00Hz. During experiments, the so-according to different design criteria like robustnessysicity
calledVelocity Scaling Blocksee [15], [17], was employed inof tuning and implementation, transient and steady perfor-
series with the proposed controller to take into accountrebn mance, or simply some preferences of a designer. Limitation
input limitations resulting from a finite maximal admissbl of the method main|y come from assumptions Al and A2. It
velocity wy,,, > 0 of a tractor wheel (i.e., vector (20) were onseems that relaxation of assumption Al could be possible by a
line postprocessed using the prescribed value,pf= 10rad/s combination of the presented solution and the one propased i
leading to the scaled contraly, = [wos vos] " applied to the [7], however this issue requires further investigationsstRc-
tractor). For more details on the experimental testbed 58 [ tion A2 seems not very limiting since the sign-homogeneous

For control purposes, the outer-loop controkefe,t) = hitching is characteristic for most practical construaticof
®3(en,t) proposed in [6] has been applied, where the nSNT vehicles, especially in the area of robotics.
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Fig. 4. Results of three experimental tests: for backwardianaunder nominal conditions (EA), for backward motion lwiincertainty inL, 3 offset (EB),
and for forward motion with substantial uncertainty in d@ethitching offsets (EC); initial vehicle configuratiegr{0) has been highlighted in magenta.
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