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This note complements paper [1] presenting the detailed convergence analysis for error e1. References to equations
taken from original paper [1] will be denoted in brackets ’{·}’. Section 1 presents convergence analysis for error e1
in the case where errors e2 and e3 tend toward zero in infinite time (the infinite-time case). Comments on the
convergence of e1 in the case of finite-time convergence of e2 and e3 (the finite-time case) are provided in Section 2.

1 Convergence analysis for error e1 – infinite-time (IT) case

For IT case we have ρ ≡ 1, thus equation {43} for ea → 0 takes the form

ė∗ = s · (−kpe
∗ − v∗), where e∗ = [e2 e3]T (1)

or in the component-wise form (using {29} and {30}):

ė2 = s ·

(

−kpe2 + ησ ‖ e∗‖
sin q1t
‖ g∗

2t‖

)

, (2)

ė3 = s ·

(

−kpe3 + ησ ‖ e∗‖
cos q1t cos q2t

‖ g∗
2t‖

)

. (3)

The subsequent analysis will be presented in the three main steps reflecting our reasoning.

1.1 Step1: transformation of error e∗ and its dynamics to the new space

Let us conduct the analysis in the auxiliary error space using the following error transformation:

e∗L =

[

e2L
e3L

]

, Le∗ =

[

sin q1t cos q1t cos q2t
− cos q1t cos q2t sin q1t

] [

e2
e3

]

, (4)

where e∗L is the transformed error vector, and L is the transformation matrix. Note that

L =

[

sin q1t cos q1t cos q2t
− cos q1t cos q2t sin q1t

]

⇒ det(L) = ‖ g∗
2t‖

2
6= 0, (5)

where the last relation results from definition {10} (matrix L is invertible). Due to the above relation it is clear that
the convergence e∗ → 0 (it has been proved in [1]) implies e∗L → 0.

Now, by time-differentiating equation (4) and using (2)-(3) one can obtain the following dynamics of the trans-
formed error components:

ė2L = s · (−kpe2L + ησ ‖ e∗L‖), (6)

ė3L = s · (−kpe3L), (7)
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where in (6) we have used the fact that (see Appendix 3.1)

‖ e∗‖ =
‖ e∗L‖

‖ g∗
2t‖

, ‖ e∗L‖ =
√

e22L + e23L. (8)

Equations (6)-(7) represent dynamics of error e∗ in the new space.
Let us define the decision factor as follows:

σ , sgn(e2L0)
(4)
= sgn(e2(0) sin q1t + e3(0) cos q1t cos q2t) ∈ {−1,+1}, (9)

where e2L0 ≡ e2L(τ = 0) is the initial value of the error component e2L. According to (4)-(5), due to convergence
e∗ → 0 (proved in [1]), and due to the form of (6)-(7) along with (9) allow us to formulate the following corollaries:

C1) the error components e2L(τ) and e3L(τ) converge asymptotically to zero,

C2) e3L(τ) converges to zero independently of e2L(τ) and it terminally passes e2L(τ),

C3) using (9) in (6) gives: ė2L = s · (−kpe2L + η sgn(e2L0) ‖ e∗L‖); hence (since η > 0) the solution e2L(τ) preserves
its initial sign, namely:

∀τ≥0 sgn(e2L(τ)) = sgn(e2L0). (10)

1.2 Step2: transformation of h∗ and convergence of its argument in the new space

Similarly as in (4) let us transform the convergence vector field h∗ = [h2 h3]T as follows:

h∗
L =

[

h2L

h3L

]

, Lh∗ =

[

sin q1t cos q1t cos q2t
− cos q1t cos q2t sin q1t

] [

h2

h3

]

, (11)

which after using {27} and {29} can be rewritten as

h∗
L , Lh∗ = kpLe∗ − ησ

‖ e∗‖

‖ g∗
2t‖

Lg∗
2t = kpe

∗
L − ησ ‖ e∗‖

[

‖ g∗
2t‖
0

]

, (12)

since Lg∗
2t = [‖ g∗

2t‖
2

0]T (by direct computations). Equation (12) has the following component-wise form:

h∗
L =

[

h2L

h3L

]

=

[

kpe2L − ησ ‖ e∗L‖
kpe3L

]

=
1

s

[

−ė2L
−ė3L

]

, (13)

where the last equality results from comparison with (6)-(7). Now, defining the argument

β , Arg(h∗
L) , Atan2 (h3L, h2L)

one can write:

tanβ(τ) =
h3L(e3L(τ))

h2L(e2L(τ), e3L(τ))

(13)
=

kpe3L(τ)

kpe2L(τ) − ησ
√

e22L(τ) + e23L(τ)
. (14)

Thus, due to corollaries C1) and C2) we obtain:

tanβ(τ) → 0 as τ → ∞. (15)

The above convergence property is crucial for the subsequent analysis conducted in the next subsection.

1.3 Step3: relation between convergence of tan β and convergence of error e1

In order to show relation between convergence of tanβ to zero and convergence of error e1 let us first rewrite the
term tanβ using definition (11):

tanβ =
h3L

h2L

(11)
=

h3 sin q1t − h2 cos q1t cos q2t
h3 cos q1t cos q2t + h2 sin q1t

=

(

tan q1t
1

cos q2t
− h2

h3

)

h3 cos q1t cos q2t
(

1 + tan q1t
1

cos q2t
h2

h3

)

h3 cos q1t cos q2t
=

=

(

tan q1t
1

cos q2t
− tan q1a

1
cos q2

)

(

1 + tan q1t
1

cos q2t
tan q1a

1
cos q2

) =
tan δt − tan δa

1 + tan δt tan δa
= tan(δt − δa), (16)
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where we have used the fact that tan q1a = h2 cos q2/h3 (see {23}). Now, we can recall (15) which according to (16)
implies that:

tanβ(τ) → 0 as τ → ∞ ⇒ (tan δt − tan δa(τ)) → 0 as τ → ∞,

and as a consequence of (16)

(

tan q1t
1

cos q2t
− tan q1a(τ)

1

cos q2(τ)

)

→ 0 as τ → ∞. (17)

Since e2(τ) = q2t − q2(τ) → 0 as τ → ∞ (see [1]) and cos q2(τ), cos q2t > 0 for all τ ≥ 0 and all admissible q2t, the
convergence result (17) is equivalent to

(tan q1t − tan q1a(τ)) → 0 as τ → ∞. (18)

Since ea(τ) = q1a(τ) − q1(τ) asymptotically tends to zero (compare {42}), then finally (18) can be replaced with:

(tan q1t − tan q1(τ)) → 0 as τ → ∞. (19)

Obviously, (19) can be met in two cases: when q1(τ) → q1t or when q1(τ) → (q1t ± π). Note that:

g∗T
2t g

∗
2(q1 = q1t, q2 = q2t) = + ‖ g∗

2t‖
2
> 0, (20)

g∗T
2t g

∗
2(q1 = q1t ± π, q2 = q2t) = −‖ g∗

2t‖
2
< 0. (21)

Hence, to conclude that (19) holds along with (20), it suffices to show that sgn(g∗T
2t g

∗
2(q1, q2)) = +1 as ea, e2, e3 → 0

or equivalently as ea, e2L, e3L → 0. Because g∗
2(q1, q2) = q̇∗/U2 = [q̇2/U2 q̇3/U2]T (see {15}) one can write:

sgn(g∗T
2t g

∗
2(q1, q2)) = sgn(U2) sgn(q̇2(q1) sin q1t + q̇3(q1, q2) cos q1t cos q2t).

Furthermore, for e1a = 0 we have σh2 = bq̇2sgn(U2) and σh3 = bq̇3sgn(U2) where b > 0 is some positive constant
(compare {23} with q1 = Atan2c (sgn(U2)q̇2 cos q2, sgn(U2)q̇3) computed according to {15}), thus we can write:

lim
e1a→0

sgn(g∗T
2t g

∗
2(q1a − e1a, q2)) = lim

ea→0
sgn(U2) sgn(q̇2(q1a − e1a) sin q1t + q̇3(q1a − e1a, q2) cos q1t cos q2t) =

= sgn(U2) sgn

(

σ h2

b sgn(U2)
sin q1t +

σ h3

b sgn(U2)
cos q1t cos q2t

)

=

= sgn(b) sgn (σ h2 sin q1t + σ h3 cos q1t cos q2t) =

= σ sgn (h2 sin q1t + h3 cos q1t cos q2t) =

(11)
= σ sgn(h2L)

(12)
= σ sgn(kpe2L − ησ

√

e22L + e23L), (22)

where g∗
2(q1, q2) = g∗

2(q1a − e1a, q2) since e1a , q1a − q1. Because e3L(τ) terminally passes e2L(τ) (see C2)) we can
write:

lim
e2L,e3L→0

(

lim
e1a→0

sgn(g∗T
2t g

∗
2(e1a, ·))

)

(22)
= lim

e2L→0
lim

e3L→0
σ sgn(kpe2L − ησ

√

e22L + e23L) =

= lim
e2L→0

σ sgn(kpe2L − ησ |e2L|) =

(9)
= lim

e2L→0
sgn(e2L0) sgn(kpe2L − η sgn(e2L0) |e2L|) =

(10)
= lim

e2L→0
sgn(e2L0) sgn(kpe2L − η sgn(e2L) |e2L|) =

= lim
e2L→0

sgn(e2L0) sgn(e2L) sgn(kp − η) =

(10)
= lim

e2L→0
sgn2(e2L0) sgn(kp − η) = 1, (23)

where in the last stage we have used the fact that η ∈ (0, kp) from assumption (see {29}).

Combination of the results (19) and (23) allows concluding about terminal convergence of error e1(τ) = f1(q1t −
q1(τ)) ∈ (−π, π] (see {9}) in the sense:

e1(τ) → 0 as τ → ∞. (24)
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2 Convergence analysis for error e1 – finite-time (FT) case

For FT case equation {43} takes the following form for ea → 0:

ė∗ = ρ s (−kpe
∗ − v∗), where e∗ = [e2 e3]T (25)

or in the component-wise form (using {29} and {30}):

ė2 = ρ s

(

−kpe2 + ησ ‖ e∗‖
sin q1t
‖ g∗

2t‖

)

, (26)

ė3 = ρ s

(

−kpe3 + ησ ‖ e∗‖
cos q1t cos q2t

‖ g∗
2t‖

)

, (27)

where ρ = ρ(‖ e∗‖) and s ∈ (0, 1] are the strictly positive functions (see {52} and {35}).
The subsequent analysis will be presented in the three main steps reflecting our reasoning.

2.1 Step1FT: transformation of error e∗ and its dynamics in the new space

Let us conduct the analysis in the auxiliary error space using the following error transformation (4). By time-
differentiation of (4) and using (26)-(27) one can obtain the following dynamics of the transformed error components:

ė2L = ρ s (−kpe2L + ησ ‖ e∗L‖), (28)

ė3L = ρ s (−kpe3L), (29)

where we have used (8) (see Appendix 3.1). Equations (28)-(29) represent dynamics of error e∗ in the new space for
the FT case. Defining the decision factor as in (9), and according to (28)-(29) allow us to formulate the following
corollaries:

C1FT) the error components e2L(τ) and e3L(τ) converge to zero in finite time,

C2FT) e3L(τ) converges to zero independently of e2L(τ) and it terminally passes e2L(τ), namely:

lim
τ→τ2

e2L(τ) = 0, lim
τ→τ3

e3L(τ) = 0, τ2 > τ3 (30)

C3FT) using (9) in (6) gives: ė2L = ρ s (−kpe2L + η sgn(e2L0) ‖ e∗L‖); hence (since η > 0) the solution e2L(τ) preserves
its initial sign, namely:

∀τ≥0 sgn(e2L(τ)) = sgn(e2L0). (31)

2.2 Step2FT: transformation of h∗ and convergence of its argument in the new space

Since almost all considerations included in Subsection 1.2 do not depend on the convergence type of position errors,
they remain valid also in FT case. Only the last conclusion formulated in (15) now holds in finite time, and according
to (14) and (30) we obtain:

tanβ(τ) → 0 as τ → τ3, τ3 < ∞. (32)

2.3 Step3FT: relation between convergence of tan β and convergence of error e1

Recalling (16), (17), and (32) one concludes that for FT case holds:
(

tan q1t
1

cos q2t
− tan q1a(τ)

1

cos q2(τ)

)

→ 0 as τ → τ3, τ3 < ∞. (33)

where τ3 has been introduced in (30). Since e2(τ) = q2t − q2(τ) → 0 as τ → τ∗2 where τ∗2 ≤ τ2 + τ3, the convergence
result (33) leads to

(tan q1t − tan q1a(τ)) → 0 as τ → τ∗2 , τ∗2 ≤ τ2 + τ3 < ∞. (34)

Because in the FT case ea(τ) = q1a(τ) − q1(τ) tends to zero as τ → Ta, Ta < ∞ (compare {41}), then finally (34)
can be replaced with:

(tan q1t − tan q1(τ)) → 0 as τ → τf , τf < τ∗2 + Ta < ∞. (35)

Considerations related to formulas (20) to (23) are valid also in FT case. Thus according to (35) one can conclude
that for the FT case holds:

e1(τ) → 0 as τ → τf , τf < τ∗2 + Ta < ∞. (36)

Note that time instant τf has been estimated conservatively in (36).
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3 Appendix

3.1 Derivation of relation (8)

According to (4) we have:

e∗ = L−1e∗L =
1

‖ g∗
2t‖

2

[

sin q1t − cos q1t cos q2t
cos q1t cos q2t sin q1t

] [

e2L
e3L

]

=





1

‖ g
∗

2t‖
2 (e2L sin q1t − e3L cos q1t cos q2t)

1

‖ g
∗

2t‖
2 (e2L cos q1t cos q2t + e3L sin q1t)



 . (37)

Hence, we can write:

‖ e∗‖
2

=
1

‖ g∗
2t‖

4

(

e22L sin2 q1t − 2e2Le3L sin q1t cos q1t cos q2t + e23L cos2 q1t cos2 q2t+

+e22L cos2 q1t cos2 q2t + 2e2Le3L sin q1t cos q1t cos q2t + e23L sin2 q1t
)

and after reducing particular terms one gets

‖ e∗‖ =

√

1

‖ g∗
2t‖

4 (e22L ‖ g∗
2t‖

2
+ e23L ‖ g∗

2t‖
2
) =

√

‖ e∗L‖
2

‖ g∗
2t‖

2 =
‖ e∗L‖

‖ g∗
2t‖

.
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