Copyrights IEEE 2013

This is the accepted version of the paper entitled 'Cascaded Bet-Point Control for N-trailers
With On-Axle Hitching’ by M. Michatek and M. Kietczewski (DI010.1109/TCST.2013.2290770)
which has been published in IEEE Transactions on Controle8ystTechnology, Vol. 22, No. 4, pp.
1597-1606,0IEEE 2013

The final paper version can be found at IEEE Xplore Digital rafy (see
http://ieeexplore.ieee.org/xpl/mostRecentissue.jsp@mber=87)



Cascaded VFO set-point control for N-trailers with on-axleHing

Maciej Michatek,Member, IEEE, Marcin Kietczewski, ©IEEE 2013

Abstract—Set-point control task for N-trailers corresponds to
the practical problem of parking/docking maneuvers performed
by a vehicle comprising of an active tractor and N passively
interconnected trailers. So far, solutions to the automated parig
problem for N-trailers have been formulated mostly by using
highly nonlinear local transformations of vehicle kinematics into
the chained form. Inherent limitations of this approach motivated
the authors to propose an alternative cascaded control solutio
with the Vector-Field-Orientation (VFO) controller used in the

outer loop. The new control law proposed in the paper does not

involve any auxiliary model transformation and is highly scalable.

proposed in [27] makes the transformed model valid only
if the orientation of a last trailer and the joint angles are
all confined to the rangé—7; 7). As indicated in [21], ill-
conditioning of highly nonlinear transformations may make
the resultant controller extremely sensitive to small djen

of configuration variables implying substantial deterfmna of
control performance in the original (task) space. Furtlogenm
the chained-form approach may lead to very complex redultan
controllers, especially if a number of trailers is large][236].

The concept has been verified by simulations and by results of This in turn may cause serious problems with proper tuning of

experimental trials conducted with a 3-trailer vehicle.

Index Terms—N-trailer, on-axle hitching, cascaded control

I. INTRODUCTION

the controllers to ensure practically acceptable vehiaéian
in a task space [21].

To avoid the limitations of the chained-form approach we
propose an alternative cascaded control concept, which doe
not require any auxiliary transformation of the SNT modal. |

Kinematics of N-trailer vehicles (N-trailers) combine sevthe proposed approach a control system consists of an outer

eral specific properties like high nonlinearity, nonholomg

structural singularity, and in-joint instability makinfe con-

trol problems for N-trailers especially difficult. This famay

loop dedicated to a posture of the last trailer, a¥dinner
loops closed around particular vehicle joints. In the oldep
we apply the Vector-Field-Orientation (VFO) control sagy,

explain a considerable interest taken by the control conityunwhich proved especially efficient for unicycle-like kinetica

in the N-trailers and related control problems, see e.g[24],

[11]. The cascaded control structure is highly scalable and

[25], [34], [36]. One may distinguish three types of N-tesil can be instantly applied to vehicles with different numhefrs

structures. Depending on the numbér € [0, N| of off-axle

trailers. The brief is a substantial extension of work [8].

interconnections applied between vehicle segments one can

say aboustandard N-trailers (SNT) if M = 0, [13], [16], [30],
non-standard N-trailers (nSNT) if M = N, [9], or general

N-trailers (GNT) if 0 < M < N, [1], [19]. Every type of N-

trailer is characterized by specific control-relevant s

[1], [10], [30]. However, some structural properties conmmo a
for all the N-trailers exclude the existence of any smoofh

asymptotically stabilizing time-invariant state-feedkéor this

kind of systems in the case of constant reference configusti ] o N )
It emk COnsists of the joint-angle vect@ € R™, and the last-trailer

(necessary Brockett's conditions are violated [7]).
the set-point control task particularly difficult despite fairly
simple definition.

In this brief we focus on the set-point control problem fo

II. VEHICLE KINEMATICS AND PROBLEM STATEMENT

Fig. 1 presents a kinematic skeleton of a standard N-trailer
It consists of an active tractor ard trailers of lengthd.; > 0,
i = 1,...,N. Trailers are interconnected in a chain by the
ssive rotary joints of on-axle type. The vehicle configjora

q2B"q" 1" =108 ... Bn Oy zn yn]T €RNTE (D)

posture vectorg € R3 (cf. Fig. 1). PointP = (zx,yn),

with coordinates being the flat outputs of SNT kinematics

[18], [30], will be called theguidance point of a vehicle.

SNT kinematics which belong to differentially flat system4'S & consequence, the last trailer will be called thl'EdanCQe
[30], and can be locally transformable into the chained forffdment. The vehicle control inputuy = [wo vo] € R

[27], [35]. The latter property has been widely utilized ire
literature due to availability of numerous control stragsgfor
chained systems [2], [14], [32]. Examples of control san$

t consists of the angular and longitudinal velocities of the

tractor, respectively.

for N-trailers based on the chained-form transformation ca A}/_(_; __________________________________ w,
be found in [23], [24], [28], [31], [35]. This undoubtedly ! 2 l>
general and elegant approach has however some inherent 5&‘
limitations. They result from application of highly nondiar tractor
local transformations of the original configuration vatesh
and control inputs, which essentially constrain admissibl v, nggle
configurations of the vehicle. The widely used transfororati . : xi
Xy X, v
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Fig. 1. Kinematic skeleton of SNT vehicle in a global frafie“, 4}



Assuming the rolling-without-slipping condition, kinetis where Atan2¢-,-) : R x R — R is a continuous version
of everyi-th segment can be treated as the unicycle of the four-quadrant function Atar2 -) : R x R +— (—m, 7],
introduced here to ensure continuity &f; variablé. A sign of
termuv;_14 in (10) determines quadrants in which, resides.
wherew; andv; are the angular and longitudinal velocities oBince it is not possible to force the desired angle (10) tirec
thei-th segment, respectively (cf. Fig. 1). Velocitiesandv; let us introduce the auxiliary joint-angle error
satisfy the following propagation formula A

eid = (Bia — Bi) € R, (11)

W Wi—1 0 L sin ﬁl
[UJ = Ji(Bi) Lil} o JiBi) = {0 Léos B; } . (3 which should be made convergent to zero by the appropriately
chosen velocityw; _14. To this aim, utilize

0; = w;, o =wv;cosly, y; =wv;sinb;, (2

i=1,...,N, where thei-th joint angle
- (4
Bi = 91'71 — 97, (4) ﬂ? (:) Wi—1 — W =1 Vi, (12)
Relations (3)-(4) describe how tractor inputg andv, propa- and selecy; é kieiq + B;q With the design parametés > 0,
gate to the-th trailer along the vehicle kinematic chain. Usingnd treatings,;; = df;q/dt as a feed-forward term. Applying

equations (2)-(4) one may formulate kinematics of the SNdefinition for v; into (12) results in
vehicle in a cascaded form [9] or in a form of driftless system

q=5(q)uo ) i . .
) ) _ ) ) Definitions (9)-(10) and (13) constitute the so-callédh
with the appropriate kinematic matri(q) (cf. [9], [13]). Joint Control Module (JCM), cf. Fig. 2, with velocity input

Wio1d 2 v+ wig = kieig + Bid + wid. (13)

Define a reference posture for the guidance segment wig = |wiq vidT, feedback fromp;, and velocity output
@ = [Onr 2nr yne| T € (—m, 7] x R2, (6) Ui-14 = (Wi 1q4 vi—1d) ' Serigs conqection of.\.]CLMfor
i = N,...,1 allows propagating desired velocities of the
and the posture error guidance segmentyg := ®,,(€), vng := ®,(€) to obtain
€y F(Onr —0n) desired tractor velocitiesyq, voq, Which in turn can be directly
ée=le.| 2| onr—ay | €(—ma] xR?  (7) applied into (5) by takingwy := woa, and vy := voq.
ey YNr — YN Computations can be summarized by the three-step algorithm

where F : R v (—m, 7. S1: computation of the desired velocities for the lastérai

Problem 1 (Control problem): Assume that configuration wya(t) == B (E(t)), vnalt) == By(&(t)) (14)
(1) is measurable, and parametégsare known. The objective ’ ’
is to design a feedback control lawy = ug (€, 3,-) which S2: propagation of the desired velocities: fo= N to 1 do

ensures boundedneds3(¢)|| < oo for all ¢ > 0, and _ . .
asymptotic stability of error (7) a& = 0 entailing terminal vi-14(t) = Liwia(t) sin i(t) + via(t) cos (1),  (15)

convergence of the vehicle joint angles in the sense: ay(t) == Liwia(t) vi-1a(t), (16)
lim e@®)=0 = B =Fo. (8 az() := via(t) vi-1a(?), (17)
t—00 Bia(t) = Atan2c(ay (t), a,(t)) € R, (18)

The control problem emphasizes asymptotic stabilization _ :
of the guidance segment at a reference posture, while the wi-14(t) = Kicia(t) + Bia(t) + wialt), (19)
terminal straightening of the vehicle chain is treated onlg3: determination of the current tractor control inputs:
as a consequence of the former. Such a formulation is less
stringent when compared to a more classical approach where wo(t) = woa(t),  vo(t) := voa(t)- (20)

one expects asymptotic stabilization of all the configorati  Remark 1: The right-hand side of (18) and time-derivative
variables (1). Consequences of this fact will be commentggd in (19) become undetermined for time instadtsvhen
on in Section VI-A. aZ(t) + aZ(t) = 0. In this case one can formally complement
definition (18) by takingB;4(t) := Biq(t_) whereg;4(t_) =

Ill. CASCADED CONTROL STRATEGY Atan2c(ay (t— ), ax(t-)) witrptl direc(tly)preceding{(. A)s a
A. Derivation of the cascaded control law consequence, one can taﬂ@(a = 0.

Assume first that there exist control functiobs(e), ®,(e) Serially connected JCMblocks constituteN nested inner
which guarantee asymptotic stability of error (7) at zero ifontrol loops with feedbacks from anglgs. The inputs to
they could be directly applied into last-trailer kinemati2) the N-th loop are feedback functionB, (e(t)) and ®,(é(t))
by takingwy := @, (€) andvy := ®,(€) (see Section IlI-B). which have to be computed on-line by an outer-loop controlle

Denoting byw;4, viq, and B;4 the desired velocities and The latter will be defined in the next section by the VFO
the desired joint angle for theth segment, respectively, thecontrol law. A scheme in Fig. 2 explains the proposed castade
following definitions can be inferred from equation (3): control structuré.

Vi—1d £ Liw;qsin B; + v;q cos B;, (9) 1For computational details of function Atan@c-) see Appendix A.

2 i ) -
N General definitions and tools devised for stability analysi cascaded
Bia = Atan2¢(Lwiq - vi—1d, Vid - Vi-1d4) € R, (10) systems can be found in [6] and references therein.



cascaded controller

q i o, o, o, _ which guarantee:
outer-loo = 4| Kinematics
coztr;llcf UNd ]CMN vzd ]CMZ Uld ICMI 0 id SIO\]fT q Gl SuPt |¢w(é(t))| < OO, Supt |@U(é(t))‘ < OOv
(VFO) B vehicle GZ (bw(é)? q)v(é) — O Only If H é” — 0’
3, G3: sup, || e(t)]| < oo andlim;_, || €(t)]| =0

A OB NSO -4 for any bounded initial posture erre(0) € (—m, 7] x R?.
5 Definitions (21)-(26) formally make& = 0 an equilibrium
outer loop of dynamics (27), thus G3 implies asymptotic stabilityeo:
0 in the Lyapunov sense.
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Fig. 2. Block scheme of the proposed cascaded control system

B. Description of the outer-loop VFO controller C. Main proposition

Properties of the VFO control law allow one to obtain non- Froposition 1 Let ¢ be some non-negative vicinity pre-
oscillatory motion of a guidance segment; they are alsofhlelpscr'bed by a designer. Assume what follows:
in ensuring a self-aligning terminal behavior of a vehidieia. Al Vt >0 |Bia(t)] < 5 fori=1,..., N,
Detailed description of the VFO controller can be found iA2- Vi |3:(0)| < § ande(0) € (—m, 7] x (R?*\ B,) with
[11], thus we only briefly recall equations of the VFO method. ~ Zero-centered balB,. of sufficiently large radius: > .
The VFO controller formulated for unicycle kinematics (2)JJnder assumptions A1-A2 control law (14)-(20) with > 0

with - = N can be described as follows: satisfying (54), and with outer-loop VFO controller (22gj,
(e = [‘Pw(é)] N { k(00 — On) + b, } (21 applied into SNT kinematics (5) in a way that
(I’U(é) hy cos Oy + hy sinfy |’ wo [de UUd]T for H V_VéH > €
o = — i o ° ., (28)
where: Vo [0 0] for ||We| <e
he = kpew — 10/ €2 + €2 cos Oy, (22) whereW = diag{wy, 1,1}, wy € (0, 1] is a weighting matrix,
i) solves Problem 1 it =0,
— _ 2 2 a3
hy = kyey —noyfei + ey sinOy, (23) ii) approximately solves Problem 1 i > 0 in the sense:
sy Ve>03T < ocand36 = (e, e(0),3(0), k, —n) such
p :{ Atan2¢(o - hy,o - hy)  for h§+h #0 (24) thatvt > T ||We(t)|| <e, || B(1)] <.
_ Onr .mOd 2 for ng +hy =0 Assumption Al has been introduced mainly for purposes
. % for hZ+h2+£0 of the proof presented in Section 1lI-D (see also Remark 2).
0o = Tg Y for hZ 4 hg ~0 (25) Assumption A2 is not very limiting in practice, since appli-
v cation of the preliminary open-loop contral, := [0 V]T,

In the above equationk,,k, > 0 andn € (0,k,) are the V > 0 ensures satisfaction of A2 in finite time. Note that (28)
design parameters, while € {—1,+1} is a decision factor determines the vehicle stopping condition activated whnen t
which determines desired motion strategy for the guidanggighted posture error enters the prescribed vicinity
segment: forward ifc := +1 or backward ifoc = —1.
Decision factors can be almost freely selected by a design

. o Y Proof of Proposition 1
according to the application needs. However, only selactio

. Detailed analysis will be done for theominal case with
o :=sgn(e;(0) cosOn, + ey (0)sinby,) € {—1,4+1} (26) ¢ = 0. Analysis for the approximate case with> 0 will be

ensures asymptotic convergence of eragt) for arbitrary @ conseguence of the former. _ ,
initial conditions of the last trailer (cf. [9]). The signriation ~ First, consider the inner-loops dynamics by showing bound-

used in (26) is calculated upon a constant argument, shuLedness and convergence of the auxiliary joint-angle error

does not change a value during a control process. €1d Bia — B
The form of VFO control law (21)-(25) has a clear interpre- .
tation due to inherent geometrical origins of the VFO method . :
(see [11]). Thanks to definitions (22)-(23) one observes the ENd Ana — BN
characteristicdirecting effect which makes the unicycle ap- Lemma 2: Dynamics of error (29) take the form
proach a reference posture in a way resembling the garage-
docking maneuvers. Intensity of this effect may be adjusted
by selecting a value of parameter (cf. Remark 3). where A = diag{k;}, k; > 0, i = 1,..., N, are the gains
Let us recall what can be expected after direct applicatigitroduced in (19), and’ v« v is the lower-triangular matrix

of (21) into kinematics of the last trailer (cf. [11]). such that|T|| < g < oo. Solution of equation (30) is
Lemma 1. Application of the VFO controller (21)-(26) into yniformly bounded in time and
kinematics (2) fori = N yields the closed-loop dynamics

1 0
Gg=G(q)®(e), G(g)= |0 cosOn]|, (27) if k; are such thatk = min;{k;} > g/p for p € (0,1).
0 sinfy Proof: See Appendix C-0a. [ ]

(1>

el = c RN (29)

é;=—Aey+ T'siney, (30)

Vi=0 [lea(t)] < ea(0)][exp(=(1—p)kt)  (31)



From now on, we assume that gaitisare selected accord- Effectiveness of the terminal vehicle-straightening pss
ing to the above suggestion guaranteeing (31). strongly depends on the domination effect determined by. (60
Second, let us analyze closed-loop behavior of posture erto the approximated case (far > 0) final straightening
(7). Assume for simplicity (and without loss of generalitat  precision is represented by a value of boundviore strictly,
G, = 0. Sincee = —q and G(q) = G(—¢&), one can rewrite in the approximated case effectiveness of convergence (34)
kinematics (2) fori = N ase = —G(—&)uy, WhereG(—¢&) depends on how long the interval — ¢5, is. Obviously, the
results from (27), anduy = [wy vn] . By recalling (14) the larger the differencé’ — tp, the smaller terminal values of
input ux can be expressed asy = ®(e) — e,,n Where angless;4(t) (and, consequentlys; (¢)) can be obtained. Since

WNd — WN 0 ... 10 ... 0 the dominatipr_1 _effect strqngjy depends on the differdqpen_
€woN = | R 0 0 1| €wv (32) and on the initial conditiorg(0) (due to inherent properties
N N of the VFO controller applied in the outer loop, see [9],
Laxon [11]), hence the final straightening precision determingd b

with e, defined in (45). Now, posture error dynamics can b is not only a function of vicinitye and initial condition
formulated asé = f.(€) + g(€,e,,) = f(€ e.,), where B(0), but also of difference:, — n and initial posturee(0).
fu(€) = —G(—e)®(e) and g(é,e.,) = G(—é)Le,,. It Indeed, all the arguments of functidie, €(0), 3(0), k, — n)
can be shown (see Appendix C-Ob) that, = Hsine; determine how long the domination effect influences the
with siney(t) = [sineyy ... sin eNd]T €1, 1}N and some Vehicle motion allowing the vehicle chain to keep straigirig

bounded matrixH,y» n. AS @ consequence before the stopping condition in (28) is activated. The @&bov
. - - - reasoning explains restrictions imposed on initial pasé{o)
e = fule) +g(e eq) = f(e ea), (33) in assumption A2.

with perturbing termg(é, e;) = G(—€)LH siney such that ~ Remark 2. According to definition (18) one observes that
g(e,0) = 0. Hence, (33) can be treated as a system wittssumption Al is met, when the product determined by (17)
statee and perturbing input,, wheree = f,,(e) = f(e,0) is positive for anyi, i.e. when velocities);; have a common
represents the zero-input dynamics of (33). According f9,(3 sign fori = 0,..., N. Potential violation of A1 may occur
the perturbing terny(e, e;) vanishes in time. The following especially if the guidance segment is initially too close to

lemma states the input-to-state stability (ISS) of (33). a reference position and the extensive reconfigurations of a
Lemma 3: System (33) has a uniformly bounded solutionehicle chain are requirédin order to minimize the violation
e(t) and is ISS with respect to inpat;. risk of A1 we propose to replace (15) by
Proof: See Appendix C-0b. [ ]

Combining (33) with (30) gives the cascaded system having Vi—1a(t) = o |Liw;a(t) sin B;(t) + via(t) cos B;(1)[,  (35)
the following properties: 1 both e = f(e,0) and (30) have
globally asymptotically stable equilibria = 0 ande; = 0,
respectively (cf. Lemma 1 and (31))? 2he driven system
(33) is ISS with respect to input;. Now, by application of
Lemma 4.7 included in [15], one claims asymptotic stabilit
of point (e, e;) = (0,0) in the cascaded system.

whereo is a decision factor inherited from the VFO control
strategy. Because of specific properties of the VFO control
law sgn(®,(t)) = o for definite fraction of a control duration

1]. Thus, by applying (35) instead of (15) makes it possibl
0 confine (17) to seR.. for almost allt > 0, limiting in this

Finally, let us analyze boundedness and terminal convef®Y desired angle (,18) fo the first ?nd fourth quadrants.
gence of joint angles?;. Upon assumption Al and due to Remark 35 Dynamlcs of thez—thi Jomt—a.ngle error result
(31) one concludes boundedness of joint-anglesin order [TOM equationés = —kieiq + 325, vijsineja (cf. (30)).
to show the terminal behavior of anglésit suffices to reveal 10 0btain a reasonable control quality in théh inner loop,

the terminal convergence of desired angleg(t) ast —» co.  CONVergence okjq(t) for j = 1,....7 — 1 should overtake
Lemma 4: In the case where — 0 holds convergence ofe;;(t). Since (54) determines the smallest

required gain for JCMmodules, hence we propose to select:
Bia(t) >0 as t—o0, i=1,...,N. (34)

ki >ko>ks>...>kn with ky = k. (36)

Proof: See Appendix C-0c ]
Combination of (31) with (34) implies terminal convergence £, ihe outer-loop controller we propose to take
of joint angles:s;(t) — 0 ast — oo fori =1,..., N.
Let us consider consequences of selection0 in condition ko :=2k,, k, >0, ne(0k,). (37)

(28). The second row of (28) determines the vehicle stopping

condition, since applicatiom := 0 into (5) instantaneously The first rule is motivated by the VFO strategy, while the next
freezes all the configuration variables. If the weightedtypes two result from stability conditions of the VFO control syst
error is outside vicinitye, then all the conclusions related tof11]. Practical selection of, should be a compromise between
boundedness and convergence tendency are preserved likdnénconvergence rate of erreft) and the resultant outer-loop
the nominal case for = 0. Since in the nominal case posturesensitivity to measurement noises in the loop. Selection of
error €(t) tend to zero in infinite time, thus far > 0 there determines a desired intensity of the directing effect J¢ise
exists finite time instanf” = T'(e,-) such thatvt > T the the differencek, — n, the higher intensity.

stopping condition in (28) is met freezing the weighted post

error in vicinity e. SThis additionally justifies restrictions imposed &(0) in assumption A2.



E. Comments on control implementation violation of Al by anglegs; has not destroyed boundedness

Terms;4 in (19) may be obtained by formal differentiation@nd convergence of any signal in the closed-loop system; it
of (18) requiring time-derivatives of signals, andv;,. Since Portrays Al as a slightly conservative assumption.
it may cause some difficulties in practice, one may estimate
Bia by using the concept of exact differentiator (see [17]). V. EXPERIMENTAL VERIFICATION
Moreover, in a case of slow vehicle motion implementation of Figure 4 presents the 3-trailer experimental RMP vehicle.
terms 3,4 can be omitted. The last trailer of a vehicle is equipped with a LED marker
In practice, one should take into account control-input linhich allows estimating posturg by an external vision sys-
itations resulting from the maximal admissible wheel véloc tem. Kinematic parameters of the RMP vehicle are as follows:
wm > 0 of a tractor. Let us recall a simple scaling procedurg; — (0.229m, i = 1,2, 3, r,, = 0.02925m, b = 0.15m.
which allows addressing these limitations [9], [11]. Dedir  Two experiments, EA and EB, have been conducted using

velocities for the tractor wheels result from the formula the parametersk; = 60, ko = 40, ks = 10, k, = 2,
WRd 1 Tw/b  —ry/b k, =1, n =06, 0 = —1, ¢ = 0.02, wg = +0.001,
wy = = P~ "ugq, P = , (38) _ i : '
Wrd Tw/2  Tw/2 w, = 3rad/s. In both experiments: terms, have been
. omitted in implementation, definition (35) has been used, an
wherer,, andb are a wheel radius and a wheel base of the

réference posturg, = 0 has been selected. Pushing control
¢,(€) of the VFO controller has been modified to a more
general form®,(e) = £(€) - (hycosbn + hysinfy) with
£(e) = (e2 + e2)*/?/(h2 + h2)Y/? taking o = 0.4. This
S S max{l' |lwra(t)] |WLd(t)|} - 1. (39) Mmodification prevents very sluggish terminal motion of the
s’ ' ’ - guidance segment. Experimental results in Fig. 5 generally
Control (39) is feasible and preserves the desired insiaotzs  ShOW that terminal quality of the vehicle-chain straiginegn

motion curvature of the tractor determined fy, (cf. [11]). IS Visibly deteriorated when compared to quality anticuat
by simulations. This is a result of non-modeled mechanical

nonidealities and measurement noises present in the feledba

IV. NUMERICAL VALIDATION ) ; ; *
loops (especially in the outer loop). However, in both ekper

Simulations have been carried out for S3T kinematics USi?ﬁe ;
nts the docking task has been successfully completed.
L; = 0.229m, ¢ = 1,2,3. Three examples SA, SB, and SC g y P

have been considered using the following common parameters V1. FINAL REMARKS

ki = 60, ko = 40, ks = 10, k, = 2, k, = 1, n = 0.8. '

Example SA has been conducted taking 0 (nominal case) A. Relating the proposed control law to existing solutions

and using modification (35), while SB and SC have beenThe most celebrated approach to control of SNT vehicles

conducted fore = 0.005, wy = 1, and using definition (15). available in the literature (called hereafter tained control)

The term 3,4 has been implemented by filtered numericakequires auxiliary transformation of vehicle kinematicgoi

differentiation of3, 4, while ;4 for i = 2, 3 have been omitted. the chained form [24], [27] (see also [34]), which is valid

Scaling procedure (38)-(39) has been implemented assumany locally for [3;] < %, i = 1,...,N, and |Oy]| # 5 (cf.

wp, = 8 rad/s,r,, = 0.025m andb = 0.17m. The following [23], [27], [28]) or |ey| < F (cf. [31]). Satisfaction of the

reference postures and motion strategies have been sklecidove restrictions allows one to utilize one of the numerous

g-=[3 —10]" ando = —1for SA, g, =[-3 —1 —1]" stabilizers devised for the chained-form model, see eJ}. [3

ando = —1 for SB,q, = [0 1 1]" ando = +1 for SC. [4], [20], [22], [23], [32]. Application of the cascaded VFO
The results presented in Fig. 3 show the non-oscillatogpntroller does not require any auxiliary transformatioence

motion of the guidance segment with the directing effe¢t does not suffer from configuration restrictions charestie

represented by specific approaching strategy to the referefor chained contrdl Formulation of the cascaded controller

posture. Control signals do not exceed the maximal feasiliethe original configuration space makes its structurertlea

values within the whole control time-horizon. Terminalilise interpretable. As a consequence, controller tuning is Emp

tions of desired anglé,4(t) (and, as a consequence, of signaland invariant to initial vehicle configurations. In contias

wo(t) and p1(t)) in the case of simulation SA are causedifficulties with controller tuning and substantial closedp

by increasing numerical sensitivity of functions Atari2c)

when both their arguments become very close to zero (a welfWorth to note that assumption A1 concerns angigs not 5;.

known property of function Atan2g, -)). Terminal oscillations

have been efficiently avoided in simulations SB and SC h¥; narer L L L radio fink

introducinge > 0 (with a cost of slightly deteriorated final \ i

precision of docking). Simulation SA is an example wher

substantial initial reconfigurations of a vehicle chain wer;a,,e,3§ e

required. Therefore in these conditions application of mod ~—g— g IV— 12

fication (35) was necessary (in the opposite case assumpt 4 ‘ d ‘ '

Al would be permanently violated arity,(¢) would converge

toward —7). On the other hand, note that temporary initigfig. 4. RMP 3-trailer vehicle used in experiments

tractor, respectively, andio; = [woq vo4]' is the control
vector computed according to (20). Now, input limitatioas c
be respected by application of the rescaled control

W, W

="
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by a guidance point located on the last trailer (the segmeaftlighted in red). Evolution of desired joint-anglgs,; have been denoted by dashed lines
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Fig. 5. Results of experiments EA and EB. Initg@l0) and referencey,- configurations have been denoted on the X-Y plots togethir avpath drawn by
a guidance point located on the last trailer (the segmentigtgkd in red)

sensitivity have been revealed in [21] and [26] in the contéx and prescribingz(0) = [31(0) B2(0) 62(0) 22(0) y2(0)] T =
chained controllers. In practice, in order to preserve piadde [0,.3 1 0.3]T, by using the proposed controller (denoted as
control performance in the task space with a change of th&O) and three alternative chained controllers: contirsuou
vehicle initial configuration manual re-tuning of the ctedn time-varying (CTV) stabilizer proposed in [22], discontous
controller parameters is often required. Similar diffimgtwith  time-varying (DTV called alsdwbrid) stabilizer presented in
relation to the fuzzy-controller have been reported in [29] [32], and discontinuous time-invariant (DVI) stabilizege|-
The next important issue concerns scalability of a corgroll oped in [3]. The results in Fig. 6 show essential difference
In the cascaded approach a change in a number of trailgrscontrol performance obtained with the time-varying and
affects only a number of JCM blocks in the inner loogime-invariant stabilizers. Time-dependent stabilizatisually
retaining complexity of the controller virtually unchamen characterizes by highly oscillatory control with possislgb-
contrast, complexity of chained and fuzzy controllers édyg stantial transient departures from the set-point (cf. CTM a
depends on a number of trailers (cf. [26] and [29], [33]). DTV cases in Fig. 6). Time-invariant stabilizers ensure-non
Finally, let us address the issue of control performancescillatory behavior of the guidance segment. This difiege
Figure 6 illustrates the results of exemplary comparatié also visible on the logarithmic plot dfq(t)||, where one
simulations conducted for S2T kinematics, assumjpg= 0 may observe the exponential convergence rate for all the



15 15
”Uo”cw ”uO”DTI 10O ”q”CTV
1 g q
10 llugllory |1 10 gl o :: ::Dw
_ - — —la
5 5 10 1 DTI
) — — =l
time [s] time [s]
0 0 -2
0 5 10 15 0 5 10 15 10
T T T T
041 & 7 -3
- Ve
0.2} CTV - i
DTV /DTl , / 10—4
7 _“VFO
°r i i i i - i i i X [mT] time [s]
-2 -15 -1 -0.5 0 0.5 1 15 2 0 10 20 30 40 50

Fig. 6. Comparison of shifted-parallel parking maneuvers&zero reference configuration achieved by the proposedded controller (VFO) and three
alternative set-point chained controllers (CTV, DTV, andllDfor S2T kinematics (initial vehicle configuratiog(0) has been denoted on the X-Y plot)

compared algorithms. On the other hand, CTV and DT¥(n) = Atan2c(b;(n),b2(n)) can be obtained in five steps:
controllers are 'true stabilizers’ which asymptoticaltplsilize -

all the configuration variables. In contrast, DTI controlleSl'q)(n) 7Atan2(b1(n)‘, ba(n)) € (=, 7]
ensures only convergence of state variables,if)) # 0, ¢f. S2.®(n —1) = Atan2(sinp(n — 1), cos p(n — 1)) € (=, 7]
[3]. The VFO controller appears as an intermediate solutio83.A®(n) = ®(n) — ®(n — 1)

which guarantees asymptotic stabilization of postgrgif g4 | AD(n) > +7 THEN Ap(n) = Ad(n) — 21

e = 0), but assures only convergence of anglk§&). In this -
context, considered DTl and VFO controllers are not able ELSEIF A®(n) < —7 THEN Ap(n) = Ad(n) + 27

to make the joint angles converge in the special case when ELSE Ap(n) = A®(n)

€(0) = 0 and3(0) # 0, while CTV and DTV controllers can S5.p(n) = p(n —1) + Ap(n) = ¢(n) €R
do that. For initial conditions presented in Fig. 6 perfonoe wherep(n—1) is an angle value from the previous time instant
achieved with DTI and VFO stabilizers looks similar. The., = ~ %" gie P

higher initial control cost is observed for VFO controllerith which has to be stored in a memory.

| w0(0)|lyeo =~ 50 not shown for clarity of the plot), which
however leads to a more smooth behavior of the vehicle chain o o N
in the later control stage. Smoothness of the guidance segme N€quality in Al implies Biq = sup;> [tan fia(t)| < oo
motion and vehicle motion strategy (forward/backward) cdf" ¢ = 1,...,N. According to (14) and G1 in Lemma 1
be easily modified in the VFO approach by parametend |“nal < Qna < 00 andfona| < Vva < oo, where€y, =
decision factors, respectively, while similar influence of theSuWPe>o [®w(€(t))], Viva = sup;>o | @, (e(t))]. Using (15) for

DTI controller parameters is not completely clear. i =N we haveuy_ia| < (LnSlya+Via) = V14 < oo.
Recalling (16)-(18) we havewy_1q4| < -=r2h=td —.

4= :
Qn_14 < oo, Where we have used Al. Ugiﬁg (15) for

APPENDIXB

B. Conclusions i = N —1 we have|lvy_oq| < (1 + By—14)(LNQNa +
Solution to the set-point control problem for N-trailerd/na) =: VN—21d < oo. Recalling (16)-(18) one can write
with on-axle hitching has been presented by using the cds~—2d| < 15 VN-2a¢Bn-2a¢ =t Qn-24 < oo. Hence,

caded control approach with application of the VFO outeby using (15) fori = N — 2 one can write|uy 34| <
loop controller. The control law proposed in the paper doé$ + By —24)(1 + By —14)(LnSQNa + Vva) =: VN34 < o0,
not require any auxiliary transformation of a vehicle modegtc. Proceeding the similar reasoning by decreasing index
and provides a highly scalable solution for vehicles with ane havesup,sq [vy—ia(t)| < Vy—q fori =0,..., N using
arbitrary number of trailers. Because of the simple castade = =

. Vg =sup|P,(e(t))], Qng=supl|®,(e(t))|, (40
control structure particular control components have rclea Nd 212118‘ (el Nd i;g' (), (40)

functional interpretation, which makes a tuning procesthef V_1d = (LNQndg + Viva), (41)
controller especially simple. Revealed noise-sensytigit the i1
closed-loop. system., increasing in gtermlnal cppt_rol stage V—ia = (LyQna + Viva) H(l + Brn_ja), (42)
be relaxed in practice by prescribing larger vicinity =1
where (42) applies for=2,..., N. Under assumption Al the
APPENDIXA bounds determined by (42) are finite. An alternative form of

Angle o(t) = Atan2c(bi (), b(t)) is equivalent to time- UPPEr bound (42) can be formulated by substituting N —:

integral ¢(t) = [ bl(f)’g%éf)_bg(&)bl(é)dg. For the discrete- N—i-1
£)+b3(8)

time domain an alternative computational algorithm is pro- Vie = (LnQna+Viva) [[ (14 Byv—ja),  (43)
vided below. Letb;(n) and by(n) denote two real-valued J=1

arguments determined in the discrete timec N. Angle which is valid now fori =0,..., N — 2.



APPENDIXC where we have used inequality (52), = k& = min;{k;} is a
Inequality in assumption A1 allows defining the bound Minimal eigenvalue of matrixd, andp € (0,1). If one selects

Cia = %r>1(f) |cos Bia(t)| > 0, (44) k= miin{k‘i} >9g/p, (54)
which will be used in the proofs below. then (53) satisfiesV,, (eq) < —2k(1 — p)V (eq). Since, the
a) Proof of Lemma2: Let us introduce the errors: right-hand side is negative definite, thyseq(t)|| < co and

< —(1— > 0.
o o1 lea)l < llea(0)] exp(~(1— p)kt) for all t > 0

. e, R R b) Proof of Lemma3: For ¢, = 0 the zero-input part of
€y = [e ] ) €w = : y €y = : . (33) corresponds to dynamics (27). Upon Lemma 1 and the
WNd — WN UNd — UN comments afterwards in Section Ill-B, one observes that the

(45) zero-input part of (33) has the globally asymptoticallybéta
Differentiating (11) with respect to time, then using (12ida equilibriumeé = 0 (G1 to G3 in Lemma 1 are valid for any
(19) allows one to writeé;q = Biq — Bi = Bia —wi—1 +w; + boundede(0)). Upon the converse Lyapunov theorem (cf. [12],

Wi—1d—Wi—1d = Pid—wi—1+witw;—14— (kieia+Pia+wiqa) = Th. 10.1.4) there exists a continuously differentiablecfion
—kieid + (wi—14 —wi—1) — (wig — w;). Combining the above Vz(e), and classC,, functionsay, as, andas such that:
equations for = 1, ..., N gives the linear perturbed dynamics _
q gA P ﬂ) aiflell) < Va(e) < as(llel)  forall e] < oo,
éq=—Aeyg+ Ae,, 46 oV (e
| | O 1. (e) < —as(llel)  forall |e] < oo.
with A = diag{k1, k2, ..., kn}, and
1 0 0 From the fact thatl; is continuously differentiable it must
B ’ OVz(e _ : _
1 —1 ... 0 be_ Vg‘ = ‘ Ve )fn( )‘ < oo. Since || fa(e)| =
Avxv=1|. . . .| @7 ||G(-e)®(e)|] < |®(e)] < oo (cf. (27) and G1 in
(') 0 ’ '1 Lemma 1) we must have for some positives (0, co)
oo - aV? é )
It can be shown that % <o for all || e]] < oc. (55)
e, = Wsineg, (48)  In the context of dynamics (33), it can be shown that
i A . . T _ N .
where sineg = [sm_eld sme]\_zd] € [ 1,.1] , and ey = ew| _ Welned _ Hsiney, (56)
Wy« is a lower-triangular matrix with the diagonal ele- e, Vsiney
J— s Bi i i _ _di ) . . .
mentswg; = L:::)os Bra Vid» and with the non-zero off-diagonal\, here the first component has been introduced in (48), while
elementSw“ = J’Eﬂl Zl via sin B Hk 1+1°05Bk g0 i Vi is a lower-triangular matrix with diagonal elements in
,Nandl =1,. @—1 USIng bounds (44) and (40)- (43)the formu;; = —0“5 v;q, and the non-zero off-diagonal el-
one observes that aII elements Bf are bounded satisfying ementsy; = — Eé ) wdbinﬁj Hk L4 cos B fori=2,. . N
¢=1,...,N,i=1,...,i-1) andl = 1,...,4 — 1. Usmg ‘Bounds (44) and (40) (43)
Vi 1 < Vja one can observe that absolute values of all the elements of
Jwii| < T.0, =% |war| < 7 . Cia <o0. (49) matrix V are bounded from above satlsfylng:é 1,...,N,
o D=1, .0 — 1) [ < G4 |uzl|<zj 10
Applying (48) into (46) yields the equatlon sequence|| V|| < N || V||max = N max; ; |1/U| < gv, Where

gv € (0,00), and|| V| . = max;; |v;;|. By analogy, and
using (49), holds] W| < N | W], = N max; ; [wi;| <
with the lower-triangular matrid® = AW = [v;;], 4,5 € gy with gy € (0,00). Hence, by recalling (56), one can

éq = —Aey +T'siney, (50)

{1,..., N}, where the non-zero elements have the forms: assess a bound of the perturbing term introduced in (33) as:
Vi = T Wii fori=1...N 51y llg(eedl <|G(~e)| | LH|| | sineql| <7 eal, (57)
Yij = Wi—1,5 — Wij for 7 <1

) wherey = (gw + gv) is a finite positive constant.
According to (51) and (49) all the elements of matfixare Now, let us assess the time-derivative Wf for original

bounded. As a consequence system (33) withe, viewed as an input:

[T < N[ T[] o = N max ;5] < g, (52) . OVi(e av ov.(e)

o T Vo= Dl g ey = el g o)+ lDge e,
Wherlfg < ﬁo ,00), a”d!IFf”max : max;, ; |2w‘) < ozs(ll el) + a7l edll S —as(| el]) + o7 || edl
Taking the positive definite functio,, (e, ed ey, its 1N~ _ o _

time-derivative can be estimated as follows: (1=as(l[el)) + a7l eal = vas(ll ll) (°8)
. T, (60 ) with v € (0,1), az being a function of clas&’, and where
Ve, = ed éq = e;(—Aeq+Tsiney) we have used (55) and (57). According to (58) one concludes

<daledl” +ITI el + mhaled® = pallea® 0 T TS
< (1 — or > — .
< k(1 - p) | eall® + (g — pk) [l eall?, (53) Mas(lel ea3<v %>



Using Th. 4.19 presented in [15], system (33) is ISS with9]
respect tee,;. Hence, upon Th. 10.4.5 formulated in [12] holds

limsup || &(t)[| < x(limsup || eq(2)])), (59) [
t—o00 t—o0
wherex(-) is some function of clask.

¢) Proof of Lemma4: Combining G2 and G3 of Lemma 1
yields: @, (e(t)), ®,(e(t)) — 0 ast — oo. However, [ig
because of the directing effect which is characteristic f@3]
the VFO control strategy, the followingerminal domination
property holds [9], [11]: Fp(t) =X 0 where Fp(t) 2
|®.,(e(t))]/|P,(e(t))]. Thus, one observes that feedback
function @, (e(t)) terminally dominates oved,,(e(t)). More HZ}
strictly, the domination begins at some finitg > 0 where
(60)

[11]

[14]

[17]
(18]

FD(t) <1 for t>tp.

The key factor affecting the domination is paramejesf the
VFO controller — less differenck, — n implies smallertp. 119
Using the above domination property and recalling (15)

for i = N one can observe that fot > ¢p hold [20]
(we use shortened notationn S= sina, Ca = cosa):
wra(t) = D,(e(t)) =~ 0 andvy_14(t) = D, (e(t))cOn (). [21]

Thus, according to (16)-(18) one observes that #fas- ¢p
Bna(t) — Atan2c(0,®%(e(t))cBy(t)) = 0. The latter
equality stems from the fact thab?(e(t))cBn(t) will be
positive whenex4(t) ~ 0 (cf. (31)) under assumption Al.
Hence, if terminallySxq(t), Bna(t) — 0 one obtains from [23]
(19) and (31) thatuy_14(t) = 0 for t > tp. Based on
the above estimation and by recalling (15) fo= N — 1
one can writevy _o4(t) b, (e(t))cBn(t)cBn-1(t) for
t > tp. According to (16)-(18) one observeby_14(t) —
Atan2c(0, @2 (e(t))c*An (t)cBn—1(t)) = 0. The latter equal-
ity results from the fact thab? (e(t))c? By (t)cBn—1(t) will be
positive wheneyq(t) = 0 andey_14(t) ~ 0 (cf. (31)) under
assumption Al. Hence, if terminallglN,ld(tLBN,ld(t) — 0 [27]
and wy_14(t) =~ 0 (as shown above) then one obtains,
according to (19) and (31), thaty 24(t) =~ 0 for ¢ > tp. |[2g]
The reasoning can be continued for all the remaining angles
Biq by decreasing index

[22]

[24]

~
~

[25]

[26]

[29]
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