

Two Rotor

Aero-dynamical System
(TRAS)

Windows 7/10 x86 x64

USB2 version

User’s Manual

 www.inteco.com.pl

http://www.inteco.com.pl/

TRAS User’s Manual -2-

Table of contents

1. INTRODUCTION .. 4

1.2 HARDWARE AND SOFTWARE REQUIREMENTS. 6
1.3 FEATURES OF TRAS .. 7
1.4 SOFTWARE INSTALLATION ... 7

2. STARTING AND TESTING PROCEDURES .. 8

2.2 TESTING AND TROUBLESHOOTING .. 9

3. TRAS CONTROL WINDOW .. 12

3.2 BASIC TEST ... 12

3.3 TRAS MANUAL SETUP ... 12

3.4 USB DEVICE DRIVER ... 15

3.5 SIMULATION MODELS ... 16

4. MODEL AND PARAMETERS .. 19

4.2 NON-LINEAR MODEL ... 21

4.3 STATE EQUATIONS ... 21
4.4 STATIC CHARACTERISTICS .. 22

4.4.1 Main rotor thrust characteristics .. 23

4.4.2 Tail rotor thrust characteristics .. 25

5. REAL-TIME MODEL .. 27

5.2 CREATING A MODEL .. 28
5.3 CODE GENERATION AND THE BUILD PROCESS 31

6. REAL-TIME MODEL IN MATLAB VERSION R2019B OR NEWER . 34

6.2 CREATING A MODEL .. 34
6.3 CODE GENERATION AND THE BUILD PROCESS 37

7. CONTROLLERS AND REAL-TIME EXPERIMENTS 39

7.2 PID CONTROLLERS .. 39

7.3 1-DOF CONTROLLERS .. 39
7.3.1 Vertical 1-DOF control .. 39

7.3.2 Real-time 1-DOF pitch control experiment 40

7.3.3 Horizontal 1-DOF control ... 43

7.3.4 Real-time 1-DOF azimuth control experiment 43

7.4 2-DOF PID CONTROLLER ... 46

7.4.1 Simple PID controller .. 47

7.4.2 Cross-coupled PID controller .. 48

7.4.3 Real-time 2-DOF control with the cross-coupled PID controller
 49

8. PID CONTROLLER PARAMETERS TUNING 51

9. DESCRIPTION OF THE CTRAS CLASS PROPERTIES 53

9.2 BITSTREAMVERSION .. 54
9.3 ENCODER .. 54
9.4 ANGLE .. 55

TRAS User’s Manual -3-

9.5 ANGLESCALECOEFF .. 55

9.6 PWM ... 55
9.7 PWMPRESCALER .. 56

9.8 STOP .. 56
9.9 RESETENCODER .. 56
9.10 VOLTAGE .. 57
9.11 RPM .. 57
9.12 RPMSCALECOEFF .. 57

9.13 THERM .. 57
9.14 THERMFLAG .. 58
9.15 TIME ... 58
9.16 QUICK REFERENCE TABLE ... 59
9.17 CTRAS EXAMPLE ... 59

TRAS User’s Manual -4-

1. Introduction

The Two Rotor Aero-dynamical System (TRAS) is a laboratory set-up
designed for control experiments. In certain aspects its behaviour resembles that
of a helicopter. From the control point of view it exemplifies a high order non-linear
system with significant cross-couplings. The system is controlled from a PC.
Therefore it is delivered with hardware and software which can be easily mounted
and installed in a laboratory. You obtain the mechanical unit with power supply
and interface to a PC and the dedicated RTDAC/USB2 I/O board configured in the

Xilinx technology. The software operates in real time under MS Windows7 x86

or x64 using MATLAB, Simulink and RTW toolboxes. Real-time is supported by
the RT-CON toolbox from INTECO.

Control experiments are programmed and executed in real-time in the
MATLAB/Simulink environment. Thus it is strongly recommended to a user to be
familiar with the RTW toolbox. One has to know how to use the attached models
and how to create his own models.

The approach to control problems corresponding to the TRAS proposed in
this manual involves some theoretical knowledge of laws of physics and some
heuristic dependencies difficult to be expressed in analytical form.

 power interface

DC - motor
 tachogenerator

main rotor

art iculation with

measurement

encoders
RT - DAC/USB2

board

counterbalance

beam

DC - motor
 tachogenerator

tail rotor

Fig. 1.1 The laboratory set-up: helicopter-like system

A schematic diagram of the laboratory set-up is shown in Fig. 1.1.The

TRAS consists of a beam pivoted on its base in such a way that it can rotate freely
both in the horizontal and vertical planes. At both ends of the beam there are
rotors (the main and tail rotors) driven by DC motors. A counterbalance arm with a
weight at its end is fixed to the beam at the pivot. The state of the beam is
described by four process variables: horizontal and vertical angles measured by
position sensors fitted at the pivot, and two corresponding angular velocities. Two
additional state variables are the angular velocities of the rotors, measured by
tacho-generators coupled with the driving DC motors.

TRAS User’s Manual -5-

In a casual helicopter the aerodynamic force is controlled by changing the
angle of attack. The laboratory set-up from Fig. 1.1 is so constructed that the
angle of attack is fixed. The aerodynamic force is controlled by varying the speed
of rotors. Therefore, the control inputs are the supply voltages of the DC motors. A
change in the voltage value results in a change of the rotation speed of the
propeller which results in a change of the corresponding position of the beam.
Significant cross-couplings are observed between the actions of the rotors: each
rotor influences both position angles. Designing of stabilising controllers for such a
system is based on decoupling. For a decoupled system an independent control
input can be applied for each coordinate of the system.

An IBM-PC compatible computer can be used for real-time control of
TRAS. The computer must be supplied with an interface board (RTDAC/USB2).
Fig. 2.5 Measurements of the beam motion shows details of the hardware
configuration of the control system for TRAS.

 RT - DAC/USB

board
D/A

 h

 v

 h

 v

physical model

U h

U v

power interface

Fig. 1.2 Hardware configuration of the TRAS

The control software for the TRAS is included in the TRAS toolbox. This

toolbox uses the RTW toolbox from MATLAB and the RT-CON toolbox from
INTECO.

TRAS Toolbox is a collection of M-functions, MDL-models and C-code
DLL-files that extends the MATLAB environment in order to solve TRAS
modelling, design and control problems. The integrated software supports all
phases of a control system development:

 on-line process identification,

 control system modelling, design and simulation,

 real-time implementation of control algorithms.

TRAS Toolbox is intended to provide a user with a variety of software tools
enabling:

 on-line information flow between the process and the MATLAB
environment,

 real-time control experiments using demo algorithms,

TRAS User’s Manual -6-

 development, simulation and application of user-defined control
algorithms.

1.2 Hardware and software requirements.

TRAS Toolbox is distributed on a CD-ROM. It contains the software and
TRAS User’s Manual. The Installation Manual is distributed in a printed form.

Hardware
Hardware installation is described in the Installation manual. It consists of:

 TRAS Mechanical Unit,

 Power interface and wiring allowing electrical connections to the TRAS set,

 RTDAC/USB2 I/O board. The board contains FPGA equipped with
dedicated logic,

 Pentium or AMD based personal computer.

Software

 Microsoft Windows W7/W10x64 and MATLAB 64 bit with Simulink, and
RTW (Simulink Coder) toolboxes (not included),

 Third party compiler MS Visual C++ depending on Matlab’s version

 Details at:
https://www.mathworks.com/support/sysreq/previous_releases.html

and

The TCP/IP protocol must be installed in the computer system,



 Details of the required software are available at:

 http://www.inteco.com.pl/support/Software_requirements.pdf



Real-time is supported by the RT-CON toolbox from INTECO

(included in TRAS Toolbox and transparent for a user).

Manuals:

 Installation Manual

 User’s Manual



The experiments and corresponding to them measurements

have been conducted by the use of the standard INTECO systems.

Every new system manufactured and developed by INTECO can be

slightly different to those standard devices. It explains why a user can

obtain results that are not identical to these given in the manual.

https://www.mathworks.com/support/sysreq/previous_releases.html

TRAS User’s Manual -7-

1.3 FEATURES of TRAS

 A highly nonlinear MIMO system ideal for illustrating complex control
algorithms.

 The system can be easily installed.

 The set-up is fully integrated with MATLAB/Simulink and operates in real-

time in MS Windows .

 Real-time control algorithms can be rapidly prototyped. No C code
programming is required.

 The software includes complete dynamic models.

 The User’s Manual, library of basic controllers and a number of pre-
programmed experiments familiarise the user with the system in a fast way.

Application note
The documentation assumes that the user has a basic experience with

MATLAB, Simulink, and RTW toolboxes from MathWorks Inc.

1.4 Software installation

Insert the installation CD and proceed step by step following displayed
commands.

TRAS User’s Manual -8-

2. Starting and testing procedures

The TRAS system is an “open” type. It means that a user can design and

solve any TRAS control problem on the basis of the attached hardware and
software. The software includes device drivers compatible with RTW toolbox. It is
assumed that a user is familiarised with MATLAB tools especially with RTW
toolbox. Therefore we do not include the detailed description of this tool.

The user has a rapid access to all basic functions of the TRAS System
from the TRAS Control Window. It includes: identification, drivers, simulation
model and application examples.

Open Matlab



 If the MATLAB R2018 or newer is used run command rehash

toolbox, close Matlab and open again.

then type:

Tras

and the TRAS Control Window opens (see Fig. 2.1)

Fig. 2.1 TRAS Control Window

TRAS Control Window contains testing tools, drivers, models and demo

applications..

TRAS User’s Manual -9-

2.2 Testing and troubleshooting

This section explains how to perform the tests. One can check if

mechanical assembling and wiring has been done correctly. The tests have to be
performed obligatorily after assembling the system. They are also necessary if an
incorrect operation of the system happens. Due to the tests sources of the system
fails can be tracked. The tests have been designed to validate the existence and
sequence of measurements and controls. They do not relate to accuracy of the
signals.

At the beginning one has to be sure that all signals are transmitted and

transferred in a proper way. The following steps are applied:

 Double click the Basic Tests button. The Basic Test window appears (Fig.
2.2)

Fig. 2.2 The Basic Tests window

The experiment may be stopped in any time. Double click on the Stop block

in the TRAS Control Window or somewhere else. If you wish to stop the
visualisation process click once on the Stop bar in the Simulation menu.

The first step in the Modular Servo System testing is to check if the

RTDAC/USB2 measuring and control board is installed properly.

 Double click the Detect RTDAC/USB board button. One of the messages
shown in Fig. 2.3 opens. If the board has been correctly installed the left
window is displayed.

TRAS User’s Manual -10-

Fig. 2.3 Result of the step 1

If the board is not detected then check whether the board has been
powered. The boards are checked very precisely before sending to a customer. In
principle, a wrong assembling is the only reason of no detecting the board.

The next step consists in resetting the encoders. It means that the initial

position of the beam is stored in the memory.

 Double click the Reset Angles button. When Fig. 2.4 opens, move the
TRAS system to the origin position and then click the Yes option. The
encoders reset and zero positions of the beam are going to be
remembered so long as an measurement error occurs.

Fig. 2.4 The Reset Angles window

Double click the Check Angles button. When the window opens click Yes,
then, move by hand the beam of the TRAS in all directions and observe
measurements on the screen (see Fig. 2.5).

Fig. 2.5 Measurements of the beam motion

TRAS User’s Manual -11-

In the next step one checks if the main and tail motors work properly.
Double click the Open loop control button. When Fig. 2.6 opens one can to

set the control inputs to the main and tail motor. The vertical axis corresponds to
the main motor and the horizontal axis corresponds to the tail motor. When you
locate the mouse pointer at [0 0.5] and click, then the control equal to 0.5 is set for
the main motor. And if you click at [0.5 0] the control 0.5 is set for the tail motor.
Using the mouse, click and slowly drug a rectangle. The motors rotate with respect
to the mouse pointer location (the intersection of the green and red lines in Fig.
2.6). The red ends of the blue lines show the rotational velocities of the propellers.
If the rectangle movement of the mouse is finished a picture similar to that given
in Fig. 2.6 should be visible.

Fig. 2.6 Motors control and checking of tacho-generators

Troubleshooting

Message or faulty action Solution

Board not detected Check connecting of the board.
Check if power switch is ON

Angles measurements failed Check the Enc socket and wiring

Propellers do not rotate Check M socket, Mains and ON
switch

Velocities are not measured Check T socket and wiring

TRAS User’s Manual -12-

3. TRAS Control Window

The user has a rapid access to all basic functions of the TRAS control

system from TRAS Control Window. It includes tests, drivers, models and
application examples.

TRAS Control Window shown in Fig. 2.1 contains four groups of the menu

items:

 Tools - Basic Test, Manual Setup, Reset Encoders and Stop Experiment,

 Drivers - USB Device Driver,

 Simulation Models: Pitch , Azimuth and 2-DOF model,

 Identification - Steady State Characteristics,

 Demo Controllers – PID azimuth, PID pitch and cross-coupled PID
controller

3.2 Basic test

The Basic Test tool was described in the previous section.

3.3 TRAS Manual Setup

The TRAS Manual Setup program gives access to the basic parameters of

the laboratory Two Rotor Aerodynamical System setup.
To run the Manual Setup in Windows XP click the ManualSetup button. If

you are using Windows 7 do not use this button. Open windows explorer, find the
ManualSetup.exe file in the matlabroot/toolbox/Tras/ManualSetup directory and
double click this file.

The most important data transferred from the RTDAC/USB2 board and the
measurements of the TRAS may be shown. Moreover, the control signals may be
set.

The application contains four frames (see Fig. 3.1):

 RTDAC/USB2 board,

 Encoders,

 Control and

 Tacho.

TRAS User’s Manual -13-

Fig. 3.1 View of the TRAS Manual Setup window

All the data accessible from the TRAS Manual Setup program are updated

10 times per second.

 RTDAC/USB2 board frame
The RTDAC/USB2 board frame presents the main parameters of the USB

board.

No of detected boards
Reads the number of detected RTDAC/USB2 boards. If the number is

equal to zero it means that the software has detected none of the RTDAC/USB2
board. When more then one board is detected the Board list must be used to
select the board that communicates with the program.

Board
Contains the list applied to the selected board currently used by the

program. The list contains a single entry for each RTDAC/USB2 board installed in
the computer. A new selection executed at the list automatically changes values of
the remaining parameters.

Logic version
The number of the configuration logic of the on-board FPGA chip. A logic

version corresponds to the configuration of the RTDAC/USB2 boards defined by
this logic.

Application
The name of the application the board is dedicated for. The name contains

four characters.

I/O driver status
The status of the driver that allows the access to the I/O address space of

the microprocessor. The status has to be OK string. In the other case the driver
HAS TO BE INSTALLED.

TRAS User’s Manual -14-

Encoders frame
The state of the encoder channels is given in the Encoder frame. The

encoders are applied to measure the azimuth and pitch angles.

Azimuth, Pitch
The values of the encoder counters, the angles expressed in radians and

the encoder reset flags are listed in the Azimuth and Pitch rows.

Value
The values of the encoder counters are given in the respective columns.

The values are 16-bit integer numbers. When an encoder remains in the reset
state the corresponding value is equal to zero.

Angle [rad]
The angular positions of the encoders expressed in radians are given in the

respective columns. If the encoder remains in the reset state the corresponding
angle is equal to zero.

Reset
When the checkbox is selected the corresponding encoder remains in the

reset state. The checkbox has to be unselected to allow the encoder to count the
position.

Control frame
The Control frame allows to change the control signals. DC drives are

controlled by PWM signals.

Azimuth and Pitch edit fields and sliders
The control edit boxes and the sliders are applied to set a new control

values of the corresponding DC drives. The control value may vary from –1.0 to
1.0.

STOP
The pushbutton is applied to switch off the control signals. If it is pressed

then both the azimuth and pitch control values are set to zero.

Azimuth and Pitch PWM prescaler
The divider of the PWM reference signal is given. The frequency of the

corresponding PWM control is equal to:

][
)1(

40
KHz

erPWMprescal
f pwm




Azimuth and Pitch Thermal flag / status
The thermal flags and the thermal statuses of the power amplifiers. If the

thermal status box is checked the corresponding power interface is overheated. If
the power interface is overheated and the corresponding thermal flag is set the
RTDAC/USB2 board switches off the PWM control signal corresponded to the
overheated power amplifier.

TRAS User’s Manual -15-

Tacho frame
The Tacho frame displays two measured analog signals generated by the

tacho-generators. The voltages and the corresponding velocities of the propellers
are displayed.

Azimuth and Pitch Voltage [V]
Displays the voltage at the outputs of the tacho-generators.

Azimuth and Pitch Velocity [RPM]
Displays the velocity of the propellers. The velocities are calculated based

on the corresponding voltages and are given in RPM.

3.4 USB Device Driver

The driver is a software go-between for the real-time MATLAB environment
and the RTDAC/USB2 I/O board. The control and measurements are transferred.
Click the TRAS Device Driver button and the driver window opens (Fig. 3.2).

Fig. 3.2 USB2 Device Driver

When one wants to build his own application one can copy this driver to a
new model. The Reset Encoder input can be used in the real-time mode only.



Do not do any changes inside the original driver. They can be

introduced only inside its copy!!! Make a copy of the installation CD

The device driver has two inputs: control  11)(tu and signal Reset. If

signal Reset changes to one the encoders are reset and do not work. If signal

TRAS User’s Manual -16-

Reset is equal to zero encoders normally work. It is important that Reset switch
works only if the real-time code is executed. It means that changing the state of
the switch, when real time mode is not running, is not effective. However when
switching occurs while the real time is running, the encoder resets and starts
measure when the switch returns to the zero (normal) position.

The details of the device driver are depicted in Fig. 3.3. The driver uses

functions which communicates directly with a logic stored at the RTDAC/USB2
board.

TRAS RT-DAC/USB2

Interface

4

Pitch RPM

3

Azimuth RPM

2

Pitch Angle

1

Azimuth Angle

ThermStatus

Status

Scope

Period

rtdacusb2_tras_dd

S-Function

0

Prescaler

0

PitchCtrlTherm

-1

Pitch Encoder

1024 PPR

-K-

Pitch

Convert to rad

-K-

Pitch

Convert to RPM

Period [ms]

-K-

-K-

-K-

TmrCnt_DeltaT

Delta t [sec]

0

AzimuthCtrlTherm

1

Azimuth Encoder

1024 PPR

-K-

Azimuth

Convert to rad

-K-

Azimuth

Convert to RPM

3

Reset

2

Pitch Control

1

Azimuth Control

Fig. 3.3 Interior of the USB2 device driver

3.5 Simulation Models

There are three simulation models available for the TRAS system. The first
one is a 1-DOF (degree of freedom) azimuth model. This model simulate
behaviour of the system in the horizontal plane only. Click the 1-DOF Azimuth
Simulation Model button to open the model shown in Fig. 3.4. Next, click the
subsystem block to see details of the model.

ctrl_a

rpm_a

pos_am

TRAS
azimuth
model

Step1

Scope

0

TRAS User’s Manual -17-

2

pos_am

1

rpm_a

0

x6=0

x2

x6

q

-K-

1
s

1
s

-K-

R_A2

-K-

-K-

CTR_A

RPM_A

FORCE_A

DCP-azimuth

|u|

Abs

cos(u)

1

ctrl_a

Fig. 3.4 The Azimuth Simulation model and its interior

A 1-DOF pitch is the second model. It describes behaviour of the system in the
vertical plane. Click the 1-DOF Pitch Simulation Model button and click the
subsystem block to see the 1-DOF pitch model and its interior (see Fig. 3.5)

ctrl_p

rpm_p

pos_pm

TRAS

pitch

model

Step1

Scope

0
pitch pos

rpm vel

2

pos_pm

1

rpm_p

y 2

x6
r

-K-

m7

-K-

-K- -K-

1
s

1
s

-K-

CTR_P

RPM_P

FORCE_P

DCP_pith

0

|u|

1

ctrl_p

Fig. 3.5 The Pitch Simulation model and its interior

The third one is the complete simulation model. It describes movements in both
planes with an interaction between the pitch and azimuth axes. Click the 2-DOF
Simulation Model button and the subsystem block to see the model and its interior
(see Fig. 3.6)

TRAS User’s Manual -18-

ctr_a

ctr_p

rpm_a

pos_a

rpm_p

pos_p

TRAS
2_dof
model

PITCH

0

0

AZIMUTH

azimuth rpm

azimuth pos

pitch rpm

pitch pos

4

pos_p

3

rpm_p

2

pos_a1

rpm_a

y 2

x6
r

x2

x6
q

-K-

-K-

-K-

-K-

-K-

1
s

1
s

1
s

1
s

-K-

-K-

-K-

-K-

-K-

-K-

CTR_P

RPM_P

FORCE_P

DCP_pith

CTR_A

RPM_A

FORCE_A

DCP-azimuth

|u|

|u|

cos(u)

2

ctr_p

1

ctr_a

Fig. 3.6 The 2-DOF simulation model and its interior

TRAS User’s Manual -19-

4. Model and parameters

Modern methods of design and adaptation of real time controllers require

high quality mathematical models of the system. For high order, non-linear cross-
coupled systems classical modelling methods (based on Lagrange equations) are
often very complicated. That is why a simpler approach is often used, which is
based on block diagram representation of the system which is very suitable for the
SIMULINK environment. The relations between the block diagram and
mathematical model of the TRAS are explained in sections 4.2 – 4.5.
 Fig. 4.1. shows an aero-dynamical system considered in this manual. At
both ends of a beam, joined to its base with an articulation, there are two
propellers driven by DC-motors. The articulated joint allows the beam to rotate in
such a way that its ends move on spherical surfaces. There is a counter-weight
fixed to the beam and it determines a stable equilibrium position. The system is
balanced in such a way, that when the motors are switched off, the main rotor end
of beam is lowered. The controls of the system are the motor supply voltages.
 The measured signals are: position of the beam in the space that is two
position angles and angular velocities of the rotors. Angular velocities of the beam
are software reconstructed by differentiating and filtering measured position
angles of the beam.

DC-motor +

 tacho

tachopradnicą

 DC-motor +

 tacho

main rotor tail rotor

free-free beam

Counter balance

articulation

main shield tail shield

Fig. 4.1. Aero-dynamical model of TRAS

The block diagram of the TRAS model is shown in Fig. 4.2. The control

voltages
hU and

vU are inputs to the DC-motors which drive the rotors (PWM

mode).
A rotation of the propeller generates an angular momentum which,

according to the law of conservation of angular momentum, must be
compensated by the remaining body of the TRAS beam. This results in the
interaction between two transfer functions, represented by the moment of inertia
of the motors with propellers vhhv kk and (see Fig. 4.2). This interaction directly

influences the velocities of the beam in both planes. The forces
hF and

vF

TRAS User’s Manual -20-

multiplied by the arm lengths)(vhl  and
vl are equal to the torques acting on the

arm.

Kv v
1/s 1/s 1/Jv

fv DC-Motor with
 main rotor

1/s 1/s

Mh

v

f h

DC-motor with
 tail rotor

h(Uh,t)

v(Uv,t)

Uh

Uv

Rhv,h)

h
Fhh)

Fvv)

lh(v)

lv

v

h

h

Mv

Kh

1/Jh(v)

Fh

Fv

khv

kvh

Ghh,h)

Gvv,v)

cos (..)

Fig. 4.2 Block diagram of the TRAS model

The following notation is used in Fig. 4.2:

h - horizontal position (azimuth position) of TRAS beam [rad];

h - angular velocity (azimuth velocity) of TRAS beam [rad/s];

hU - horizontal DC-motor PWM control input ;

h - rotational speed of tail rotor [rad/s] - non-linear function

)t(U=Hω hhh  [rad/s] ;

hF - aerodynamic force from tail rotor - non-linear function

)(w=FF hhh [N];

hl - effective arm of aerodynamic force from tail rotor)(a=ll vhh [m];

hJ - non-linear function of moment of inertia with respect to vertical

axis,)(aJJ vhh  [kg m
2
];

hM - horizontal turning torque [Nm];

hK - horizontal angular momentum [N m s];

hf - friction coefficient in a horizontal plane [N m];

v - vertical position (pitch position) of TRAS beam [rad];

v - angular velocity (pitch velocity) of TRAS beam [rad/s];

vU - vertical DC-motor PWM voltage control input;

v - rotational speed of main rotor - non-linear function

t)(U=Hω vvv  [rad/s];

TRAS User’s Manual -21-

vF - aerodynamic force from main rotor - non-linear function

)(ωFF vvv  [N];

vl - arm of aerodynamic force from main rotor [m];

vJ - moment of inertia with respect to horizontal ax- [kg m
2
];

vM - vertical turning moment [Nm];

vK - vertical angular momentum [Nms];

vf - friction coefficient in a vertical plane [Nm];

vR - vertical returning moment),Ω(αRffR hvhgcfh  [Nm];

hvJ - vertical angular momentum from tail rotor [Nms];

vhJ - horizontal angular momentum from main rotor [Nms];

vH - differential equation  tUH vvv , ;

hH - differential equation  tUH hhh , ;

vG - aerodynamical dumping torque from main rotor  vvvG , ;

hG - aerodynamical dumping torque from tail rotor  hhhG , .

hR - moment of centrifugal force  hvhR , .

Controlling the system consists in stabilising the TRAS beam in an arbitrary

(within practical limits) desired position (pitch and azimuth) or making it track a
desired trajectory. Both goals may be achieved by means of appropriately
chosen controllers. The user can select between two types of PID controllers and
a state feedback controller (see section 6).

4.2 Non-linear model

Available after purchasing the system.

4.3 State equations

Available after purchasing the system.

TRAS User’s Manual -22-

4.4 Static characteristics

It is necessary to identify the following functions:

 Two non-linear input characteristics determining dependence of the DC-motor

rotational speed on the input voltage (RPM characteristics):)(UHω vvv  ,

)(UHω hhh 

To measure the characteristics double click the Static characteristics button

in TRAS Control Window. The window given in Fig. 4.3 opens. In this window one
defines the minimal and maximal control values and a number of measured
points. The control order can be set as: Ascending, Descending or Reverse. Also
one can choose the pitch or azimuth static characteristic. Note, that the control
signal is normalised and changes in the range

[-1, +1] what corresponding to the input voltage range [-24V, +24V] .

Fig. 4.3 Parameters of measurement of static characteristics

Choose Azimuth axis (tail rotor) and click the Run button. The constant

value of control activates the DC motor so long as is required to obtain a steady
state of the shaft angular velocity. Then, the velocity is measured and the control
value is changed to the next constant value and DC motor is activated again.
These steps are repeated to the end of the control range. This action should be
repeated for pitch axis (main rotor) to obtained the both characteristics. Examples
of the measured static characteristic for the main and tail rotors are shown in Fig.
4.4.

TRAS User’s Manual -23-

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

PWM control value [--]

ro
to

r
v
e
lo

c
it
y
 [

rp
m

]

rpm vs. PWM

Fig. 4.4. Main and tail rotor static characteristics

If the characteristics is measured in Reverse mode (the control has been

changed from –1 to +1 and reverse), there are two slightly different plots.

 Two non-linear characteristics determining dependence of the propeller thrust
on DC- motor rotational speed (thrust characteristics):

)vv=v hhh (ωF) , F(ω=FF .

The thrust static characteristics of the propellers should be measured in the

case when the propellers were changed by a user. In this case a proper electronic
balance (no delivered with the system) is necessary to measure the force created
by rotational movements of the propellers. The characteristics included in the
TRAS Toolbox and shown in this section were obtained by the manufacturer of the
TRAS.

4.4.1 Main rotor thrust characteristics

TRAS User’s Manual -24-

e l e c t r o n i c

 b a l a n c e

s t r i n g

b a l a n c e

 w e i g h t

Fig. 4.5 Measuring of the main rotor thrust characteristics

To perform measurements correctly block the beam so that it could not

rotate around the vertical axis, place the electronic balance under the beam in
such a way that it is pulled by the propeller straight up. To balance the beam in
the horizontal position attach a weight to the beam (as in Fig. 4.5) .

Fig. 4.6 Measured static thrust characteristics of the main rotor

 For further applications the measured characteristics should be replaced by
their polynomial approximations. For this purposes one can use the MATLAB
polyfit.m function. An example is given in Fig.3.6. The obtained polynomials have
the form:

0.014 - 103.5 102.7 104.1 107.8 - 101.8 -
~ -52-83-114-165-18

vvvvvvF  

4.5 - 106.1 31 - 109.2 - 101.3 101.1 101.1 - 105.2 - ~ 323342546273

vvvvvvvv UUUUUUU 

TRAS User’s Manual -25-

Fig. 4.7 Polynomial approximation of the main rotor characteristics

4.4.2 Tail rotor thrust characteristics

 Fig. 4.8 shows laboratory set-up for measuring thrust of the tail rotor.

e l e c t r o n i c

 b a l a n c e

r o p e

b a l a n c e

 w e i g h t

Fig. 4.8 Laboratory set-up for the tail rotor thrust characteristics

To measure the static thrust characteristics one should to rearrange the

laboratory set-up as shown in Fig. 4.8 and the electronic balance should be used.

The measured by the producer of the TRAS thrust static characteristics of
the tail motor are given in Fig. 4.9.

TRAS User’s Manual -26-

Fig. 4.9 Thrust characteristics measured for the tail rotor.

For further applications the characteristics can be replaced by their

polynomial approximations. For this purposes one can use the MATLAB polyfit.m
function. The obtained polynomials are as follows:

1009010121037102310141062
~ 529312417520 . ω. ω. - ω. ω. ω.- F v

-

h

-

h

-

h

-

h

-

h 

291089103105410711022~ 322334253 . - U. U U. - U. - U. ω vvvvhh 

Fig. 4.10 Polynomial approximation of tail rotor characteristics

TRAS User’s Manual -27-

5. Real-time model

In this section the process of building your own control system is described.

The RT-CON toolbox is used. An example how to use the TRAS software is
shown later in section 5.3. In this section we give indications how to proceed in
the real-time environment.



Before starting, test your MATLAB configuration and compiler

installation by building and running an example of a real-time application.
MSS toolbox includes the real-time model of PC speaker.

The model pc_speaker_xxx.mdl does not have any I/O blocks so that
you can run this model regardless of the I/O boards in your computer.
Running this model will test the installation by running Real-Time
Workshop, and your third-party C compiler.

In the MATLAB command window, type

pc_speaker_vc (if you are using Visual C++ compiler)

Build and run this real-time model as follows:

 From the Tools menu, point to Real-Time Workshop, and then click
Build Model.

The MATLAB command window displays the following messages.

Starting Real-Time Workshop build procedure for model: pc_speaker_vc

Generating code into build directory: C:\apps\MATLAB\R2xxxx\work\

pc_speaker_vc_RTCON

Invoking Target Language Compiler on pc_speaker_vc.rtw. . .

.. . .

Created RT-CON executable: pc_speaker_vc.dll
Successful completion of Real-Time Workshop build procedure for model:

pc_speaker_vc

 From the Simulation menu, click External, and then click Connect to
target.

The MATLAB command window displays the following message.
Model pc_speaker_vc loaded

 From Simulation menu, click Start real-time code.
The Dual scope window displays the output signals.

Only correct configuration of the MATLAB, Simulink, RTW and C

compiler guaranties the proper operation of the TRAS system.



Only correct configuration of the MATLAB, Simulink, RTW and

C compiler guaranties the proper operation of the system.

TRAS User’s Manual -28-

To build the system that operates in the real-time mode the user has to:

 create a Simulink model of the control system which consists of TRAS
Device Driver and other blocks chosen from the Simulink library,

 build the executable file under RT-CON (see Fig. 5.1),

 start the real-time code from the Simulation/Start real-time code pull-
down menus; in this way the system runs in the real-time.

Fig. 5.1. Creating the real-time code using RTW and RT-CON

5.2 Creating a model

The simplest way to create a Simulink model of the control system is to use
one of the models included in Tras Control Window as a template. For example,
click on the PID Azimuth button and save it as MySystem.mdl name. The
MySystem Simulink model is shown in Fig. 5.2.

TRAS User’s Manual -29-

Fig. 5.2 The MySystem Simulink model

Now, you can modify the model. You get absolute freedom to develop your

own controller. Remember to leave the Tras Device driver model in the window.
This is necessary to work in the real-time environment.

Though it is not obligatory, we recommend you to leave the scope. You
need a scope to watch how the system runs. The saturation blocks are built in the
Tras driver block. They limit the currents to the DC motors for safety reasons.
However they are not visible for the user who may complain that the controls
saturate despite it would not been predicted. Other blocks remaining in the
window are not necessary for our new project.

Creating your own model on the basis of an old example ensures that all-
internal options of the model are set properly. These options are required to
proceed with compiling and linking in a proper way. To put the Tras Device Driver
into the real-time code a special make-file is required. This file is included to the
TRAS software.

You can apply most of the blocks from the Simulink library. However, some
of them cannot be used (see RTW and RTWT reference manuals).

The scope block properties are important for an appropriate data
acquisition and watching how the system runs.

The Scope block properties are defined in the Scope property window (see
Fig. 5.3). This window opens after the selection of the Scope/Properties tab. You
can gather measurement data to the Matlab Workspace marking the Save data to
workspace checkbox. The data is placed under Variable name. The variable
format can be set as structure or matrix. The default Sampling Decimation
parameter value is set to 1. This means that each measured point is plotted and
saved. Often we select the Decimation parameter value equal to 5 or 10. This is a
good choice to get enough points to describe the signal behaviour and to save the

TRAS User’s Manual -30-

computer memory. In this case the time space of the plot is equal to 0.01 [s].
Remember mark the Limit data points to last checkbox.

Fig. 5.3 Setting the parameters of the Scope block

When the Simulink model is ready, click the Tools/External Mode Control
Panel option and next click the Signal Triggering button. The window presented in
Fig. 5.4 opens. Select Select All check button, set Source as manual, set Duration
equal to the number of samples you intend to collect, and close the window.

Fig. 5.4 The External Signal & Triggering window

TRAS User’s Manual -31-

5.3 Code generation and the build process

Once a model of the system has been designed the code for real-time
mode can be generated, compiled, linked and downloaded into the processor.

The code is generated by the use of Target Language Compiler (TLC) (see
description of Simulink Target Language). The make-file is used to build and
download object files to the target hardware automatically.

At the beginning you have to specify the simulation parameters of your

Simulink model in the Simulation parameters dialog box. The RTW page appears
when you select the RTW tab (Fig. 5.5).

The RTW page is used to set the real-time build options and then to start
the building process of the RTW.DLL executable file.

Fig. 5.5. Real Time Worshop tab in the Configuration Parameters page of
the Simulation parameters option

The system target file name is rtcon_tras_USB2.tlc. It manages the code

generation process. The rtcon_tras_vc_us2b.tmf template make-file is devoted to
C code generation using the Visual C++ compiler.

Click Interface tab and next dialog page shown in Fig. 5.6 opens Note that

External mode is set and Transport layer is RT-CON tcpip. These options have to
be set in the RTW and RT-CON environment.

TRAS User’s Manual -32-

Fig. 5.6 The Interface tab in the Configuration parameters dialog box

The Solver page appears when you select the Solver tab (Fig. 5.7). The

Solver page is used to set the simulation parameters. Several parameters and
options are available in the window. The Fixed-step size editable text box is set to
0.002 (this is the sampling period given in seconds).



The Fixed-step solver is obligatory for real-time applications. If

you use an arbitrary block from the discrete Simulink library or a

block from the driver library remember that different sampling

periods must have a common divider.

The Start time has to be set to 0. The solver has to be selected. In our

example the fifth-order integration method  ode5 is chosen.

TRAS User’s Manual -33-

Fig. 5.7 Simulation parameters

If all parameters are set properly you can start the DLL executable building
process. For this purpose press the Build push button on the RTW page) or

.
Successful compilation and linking processes generate the following

message:

Created Real-Time Windows Target module MySystem.rwd.

Successful completion of Real-Time Workshop build procedure for model: MySystem

Otherwise, an error massage is displayed in the MATLAB command

window.

TRAS User’s Manual -34-

6. Real-time model in MATLAB version R2019b or newer

The previous section described creating and running real-time models for

older versions of Matlab.
Since the R2019b version MathWorks has changed the look and the way of

handling real-time models created in Simulink. This section describes how to
compile (build) and run a real-time model for these newer versions of Matlab. The
Simulink Coder and RT-CON toolboxes are used.

Suppose we have designed the My_System model shown below in Fig. 5.1.
This model was created as a copy of any real-time model contained in the
INTECO software.

To build the system that operates in the real-time mode the user has to:

 create a Simulink model of the control system which consists of Device
Driver and other blocks chosen from the Simulink library,

 build the executable file compiling model,

 start the real-time code.

The description in this section contains only the differences from the
previous versions of MATLAB. So reading the previous chapter carefully is
necessary to understand the process of creating and running real time.

6.2 Creating a model

The simplest way to create a Simulink model of the control system is to use
one of the models included in the INTECO’s software. as a template. For
example, click any model and save it as MySystem name. The MySystem
Simulink model is shown in Fig. 5.1.

TRAS User’s Manual -35-

Fig. 6.1. My_System real-time model

Now, you can modify the model. You get absolute freedom to develop your

own controller. Remember to leave the Device driver block in the window. This is
necessary to work in the real-time environment.

Though it is not obligatory, we recommend you to leave at least one scope.
You need a scope to watch how the system runs.

Creating your own model on the basis of an old example ensures that all-
internal options of the model are set properly. These options are required to
compiling and linking in a proper way. See at Fig. 5.4 and Fig. 6.3. To build real-
time code a special files shown in System target file and Template file sections
are required. These files are included to the INTECO’s software.

You can apply most of the blocks from the Simulink library. However, some
of them cannot be used (see Simulink Coder reference manuals).

When the Simulink model is ready, click the Hardware Settings option and
next click the Code Generation button. The window presented in Fig. 5.4 opens.
Select Interface button to see the external mode options at Fig. 6.3. The system
target file name is rtcon_tras_USB2.tlc. It manages the code generation process.

TRAS User’s Manual -36-

Fig. 6.2 Internal code generation options

The rtcon_tras_vc_us2b.tmf template make-file is devoted to C code

generation using the Visual C++ compiler.
These files are examples and are of course different for different systems.

Fig. 6.3. Interface of the external mode options

TRAS User’s Manual -37-

6.3 Code generation and the build process

Once a model of the system has been designed the code for real-time
mode can be generated, compiled, linked and downloaded into the processor.

To compile (build) model click Monitor&Tune button and next Build for
Monitoring option (see in Fig. 5.5). You can also use the keyboard by clicking
CTRL+b keys. You will get the same effect in this way.

Fig. 6.4. Building model

Successful compilation and linking processes generate the following

message:

Successful completion of build procedure for model: My_System
Simulink cache artifacts for 'My_System' were created in ‘..My_System.slxc'. Build
process completed successfully

Otherwise, an error massage is displayed in the Diagnostic Viewer window.

To run the real-time model click the Control Panel option and window

shown in Fig. 5.7 will appear. Next click Connect button and real-time starts.

TRAS User’s Manual -38-

Fig. 6.5 Connect with target



 Do not use option Build Stand-Alone shown in Fig. 6.6 for

compilation .

.
Fig. 6.6 Do not use this option !!

TRAS User’s Manual -39-

7. Controllers and real-time experiments

In the following section we propose three PID controllers. It is possible to

tune the parameters of the controllers without analytical design. Such approach to
the control problem seems to be reasonable if a well identified model of the TRAS
is not available. The effectiveness of the PID controllers discussed here is
illustrated by control experiments.





The experiments and corresponding to them measurements

have been conducted by the use of the standard INTECO systems.

Every new system manufactured and developed by INTECO can be

slightly different to those standard devices. It explains why a user can

obtain results that are not identical to these given in the manual.

7.2 PID controllers

One degree of freedom (1-DOF) control problem is the following. Design a

controller that will stabilise the system, or make it follow a desired trajectory in one
plane (one degree of freedom) while motion in the other plane is blocked
mechanically or being controlled by another controller.

If TRAS is free to move in both axes we refer to the control as two degree
of freedom (2-DOF). The four PID controllers for TRAS: PIDvv, PIDvh, PIDhv and
PIDhh (h-horizontal (azimuth), v-vertical (pitch)) are considered. The subscripts
indicates the source-sink relation for the controller. Each control signal (Uv and
Uh) is the sum of two controller outputs. For example, vertical control denoted
later as Uv is the sum of two output signals: PIDvv and PIDhv. The internal
structure of each PID controller is shown in Fig. 7.13b. There are three
parameters to be set for every controller: KP, Ki and Kd. The TRAS control in the

vertical and horizontal planes requires setting altogether 12 (34) controller
parameters. Saturation blocks introduce four additional Isat parameters: Ivvsat, Ivhsat,
Ihhsat and Ihvsat, which are the limits of absolute values of the integrals of errors,
and two: Uhmax and Uvmax parameters, which are the limits of absolute value of
controls. These 18 (12+4+2) parameters have their default values.

7.3 1-DOF controllers

The task of the one-degree-of-freedom (1-DOF) controllers is to move the
TRAS to an arbitrary position in the selected plane and to stabilise it there.

7.3.1 Vertical 1-DOF control

At the beginning we restrict our control objective to stabilising the system in
the vertical plane only (using the included clamp). We reduce the original system

TRAS User’s Manual -40-

to the 1-DOF system by mechanically blocking its freedom to move in the
horizontal plane. A corresponding block diagram of the PID control system is
presented in Fig. 7.1.

  v  vd U v  v

 1-DOF

 SYSTEM PID vv

 vd - desired pitch

Fig. 7.1 1-DOF pitch control system

The block diagram below shows the system in a more detailed form (Fig.

7.2). Notice, that only the vertical part of the control system is considered.

Kv v
1/s 1/s 1/Jv

fv DC-Motor with
 main rotor

1/s 1/s

Mh

v

f h

DC-motor with
 tail rotor

h(Uh,t)

v(Uv,t)

Uh

Uv

Rhv,h)

h
Fhh)

Fvv)

lh(v)

lv

v

h

h

Mv

Kh

1/Jh(v)

Fh

Fv

khv

kvh

Ghh,h)

Gvv,v)

Fig. 7.2 The block diagram 1-DOF system (vertical plane)

7.3.2 Real-time 1-DOF pitch control experiment

Fix the TRAS device in the horizontal plane using the special plastic clamps

delivered with TRAS. Set it in the neutral vertical position and wait until the all
oscillations are finished. In the Tras Control Window double click the Reset
Encoders block.

Click the PID Pitch controller button and the model shown in Fig. 7.3 opens.
Set all PID controller coefficients as: 7918.0 and 3532.0 0339.0  dip KKK . Also set

saturation of the integral part of the controller to 1.1. The reference signal choose
square with amplitude equal to 0.2 [rad] and frequency set 1/60 [Hz]. Build the

TRAS User’s Manual -41-

model and click on the Simulation/Connect to target option and Start real-time
code option.

 1-DOF Pitch PID Control

0

Zero Azimuth

Control

TRAS

Saturation

Reset

Encoders

1

Reset

Reference Angle

Generator

RPM0.3

Pitch Offset1

0

Normal

-K-

Kp

-K-

Ki

-K-

Kd

1

s

num(z)

den(z)

FIlter1

rad-to-rad/s

Calculate

Velocity

Angle & Control
Azimuth Angle

Pitch Angle

Azimuth RPM

Pitch RPM

Angle & Ref erence

Control

Control

pitch v elocity

Fig. 7.3 Real-time model for pitch control

The results of the experiment are shown in Fig. 7.4.

Fig. 7.4 Results of PID pitch control

The details of the above experiment are shown in Fig. 7.5 and Fig. 7.6.

TRAS User’s Manual -42-

0 10 20 30 40 50 60 70 80 90

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
Control

time [s]

Fig. 7.5 The control

0 10 20 30 40 50 60 70 80 90
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Pitch position nad reference signal

time [s]

Fig. 7.6 The pitch position and reference signal

TRAS User’s Manual -43-

7.3.3 Horizontal 1-DOF control

 In the next experiment we will apply stabilising PID controller in the
horizontal plane. We block the system in one axis so that it cannot move in the
vertical plane (using the included fixing rectangle).. A corresponding block diagram
of the control system is shown in Fig. 7.7, and in a more detailed form in Fig. 7.8.

 hd U
h  h

1-DOF

SYSTEM
PID h

h

 h

 hd -desired azimuth

Fig. 7.7 1-DOF control closed-loop system (azimuth stabilisation)

Notice that only the ‘horizontal’ part of the control system is considered.

Kv v
1/s 1/s 1/Jv

fv DC-Motor with
 main rotor

1/s 1/s

Mh

v

f h

DC-motor with
 tail rotor

h(Uh,t)

v(Uv,t)

Uh

Uv

Rhv,h)

h
Fhh)

Fvv)

lh(v)

lv

v

h

h

Mv

Kh

1/Jh(v)

Fh

Fv

khv

kvh

Ghh,h)

Gvv,v)

Fig. 7.8 The block diagram of 1-DOF system (horizontal plane)

7.3.4 Real-time 1-DOF azimuth control experiment

Fix the TRAS device in the vertical plane using the special fixing rectangle

delivered with TRAS. Set it in the zero position and click on the Reset Encoders
block in Tras Control Window.

Click PID Azimuth controller and the model shown in Fig. 7.9 opens. Set all
PID controller coefficients as 4008.1 and 0115.0 9758.1  dip KKK . Build the

TRAS User’s Manual -44-

model and click on the Simulation/Connect to target and Start real-time code
options.

 1-DOF Azimuth PID control

Control

0

Zero Pitch Control

TRAS

Reset

Encoders

1

Reset

Reference Angle

Generator

RPMs

0

Normal

-K-

Kp

-K-

Ki

-K-

Kd

1

s

num(z)

den(z)

Control FIlter

rad-to-rad/s

Calculate

Velocity

Angles

Angle & Control

num(z)

den(z)

 FIlter1

Azimuth Angle

Pitch RPM

Azimuth RPM

Pitch Angle

Angle & Ref erence

Filtered control

 azimuth v elocity

control

control

Fig. 7.9 Real-time model for PID azimuth control

The results of the experiment are shown in Fig. 7.10. Notice, that control

similar to the pitch control changes with a high frequency..

Fig. 7.10 Results of PID azimuth control

The details of the above experiment are shown in Fig. 7.11 and Fig. 7.12.

TRAS User’s Manual -45-

0 5 10 15 20 25 30 35 40
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Control

time [s]

Fig. 7.11 Control

0 5 10 15 20 25 30 35 40
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Azimuth position nad reference signal

time [s]

Fig. 7.12 The azimuth position and reference signal

TRAS User’s Manual -46-

7.4 2-DOF PID controller

The structure of the cross-coupled multivariable PID controller is shown in
Fig. 7.13.

 a)

 v

U h  h

U v

PID hh

PID vv

PID h v

PID vh

 b)

U 

saturation block

 U max

saturation block I sat

Ki/ S

S K d

Kp

Fig. 7.13 Structure of the cross-coupled PID controller

a) general b) single PID block

The controller is described by the equations given bellow.
  v vd v  ,

  h hd h  ,

where:  v h, are errors of vertical (pitch) and horizontal angle (azimuth),

 vd hd, are reference values of vertical and horizontal angles,  v h, are vertical

and horizontal angles.

The integrators are described by the following equations:

I t K dtvv ivv v

t

()  
0

, for I I Ivvsat vv vvsat  

if I I then I Ivv vvsat vv vvsat()  , if I I then I Ivv vvsat vv vvsat()    ,

I t K dtvh ivh v

t

()  
0

, for I I Ivhsat vh vhsat  

if I I then I Ivh vhsat vh vhsat()  , if I I then I Ivh vhsat vh vhsat()    ,

I t K dthv ihv h

t

()  
0

, for I I Ihvsat hv hvsat  

TRAS User’s Manual -47-

if I I then I Ihv hvsat hv hvsat()  , if I I then I Ihv hvsat hv hvsat()    ,

I t K dthh ihh h

t

()  
0

, for I I Ihhsat hh hhsat  

if I I then I Ihh hhsat hh hhsat()  , if I I then I Ihh hhsat hh hhsat()    ,

where: K K K Kivv ivh ihv ihh, , , are gains of the I parts,

 I I I Ivvsat vhsat hvsat hhsat, , , are saturation’s of the integrators.

Finally, vertical and horizontal controls are:

U K I t K
d

dt
K I t K

d

dtv pvv v vv dvv

v

pvh h vh dvh

h
     





() () , for   U U Uv v vmax max

if U U thenU Uv v v v()max max  , if U U thenU Uv v v v()max max    ,

U K I t K
d

dt
K I t K

d

dt
h phv h hv dhv

v
phh h hh dhh

h     





() () , for   U U Uh h hmax max

if U U thenU Uh h h h()max max  , if U U thenU Uh h h h()max max    ,

Where:
 K K K K K K K Kpvv pvh phv phh dvv dvh phv phh, , , , , , , are parameters of the controllers,

 U Uv hmax max, are the saturation limits of the vertical and horizontal controls.

7.4.1 Simple PID controller

 The simple PID controller controls the vertical and horizontal movements
separately. In this control system influence of one rotor on the motion in the other
plane is not compensated by the controller structure. The system is not de-
coupled. The control system of this kind is presented in Fig. 7.14. The controller
structure is presented in Fig. 7.15.

 PID
simple

v

h Uh

Uv

 2-DOF

 SYSTEM

v

h
hd

vd

Fig. 7.14 The block diagram of 2-DOF control system with a simple PID-
controller

TRAS User’s Manual -48-

U h

U v v

P I D h h

 h

P I D v v

Fig. 7.15 The block diagram of the simple PID-controller

7.4.2 Cross-coupled PID controller

 The cross-coupled PID controller controls the system in the pitch and
azimuth planes. In this control system influence of one rotor on the motion in the
other plane can be compensated by the cross-coupled structure of the controller.
The control system is shown in Fig. 7.16. The cross-coupled PID controller
structure is shown in Fig. 7.17.

U h

 v

 h

 P I D
 c r o s s

 c o u p l e d U v

 2 - D O F

 S Y S T E M

 v

 h h d

 v d

Fig. 7.16 The block diagram of the 2-DOF control system with the cross-
coupled PID-controller

 v

U h  h

U v

PID hh

PID vv

PID hv

PID vh

Fig. 7.17 The block diagram of the cross-coupled PID controller

TRAS User’s Manual -49-

7.4.3 Real-time 2-DOF control with the cross-coupled PID controller

The task in this case is the same as in the previous sections but TRAS is

not mechanically blocked, and therefore it is free to move in both planes.
Click the 2-DOF controller button and the model shown in Fig. 7.18 opens.

Set the coefficients of the crossed PID controllers as follows:

 2-DOF PID Control

[vel_pi]

vel_vert

[vel_az]

vel_hor

TRAS

Sat1

Sat

Reset

Encoders

1

Reset
RPM

num(z)

den(z)

Pitch FIlter

Pitch

Reference

Pitch

Angle & Control

0

Normal

[vel_az]

[vel_pi]
0.3

rad-to-rad/s

Calculate Pitch

Velocity

rad-to-rad/s

Calculate Azimuth

Velocity

num(z)

den(z)

Azimuth FIlter

Azimuth

Reference

Azimuth

Angle & Control

Angles & References

eps azimuth

eps v el_azimuth

eps pitch

eps v el_pitch

Out1

Out2

Out3

Out4

4-PIDs

Azimuth Angle

Azimuth RPM

Pitch RPM

Pitch Control

Pitch Control

Azimuth Control

Azimuth Control

Pitch Angle

Pitch Angle & Ref erence

Fig. 7.18 Real-time model of the 2-DOF control task

Click “4 PIDs” block and set the controller parameters as in Fig. 7.19.

Fig. 7.19. Coeffitients of the cross-coupled PID controller

TRAS User’s Manual -50-

Also set the reference signals as follows: the reference azimuth signal as
square wave with 0.4 [rad] amplitude and 1/50 [Hz] frequency, and the reference
signal for azimuth as sin wave with the amplitude 0.1 and frequency 1/60 [Hz].

Build the model and click on the Simulation/Connect to target option and
Start real-time code option.

The results of the experiment are shown in Fig. 7.20.

Fig. 7.20 Results of the 2-DOF control with the cross-coupled PID controller
(azimuth and pitch positions)

TRAS User’s Manual -51-

8. PID controller parameters tuning

There are several methods of designing closed-loop control systems. In

order to obtain optimal (or sub-optimal) settings of parameters for the PID
controllers the so-called tuning methods may be used. The following tuning
methods can be distinguished:

 Tuning based on the time or frequency responses. An experiment is
performed with the process and with the model of the process. Tuning rules
are based on time or frequency responses of the system. This method is not
used for TRAS.

 More general method is the minimisation of a objective function. The idea of
this method for TRAS with a PID controller is presented in Fig. 8.1.

um m

+

-

ym simulation

model of

TRAS

PID(Kp,Ki,Kd)
 CONTROLLER

ymd

 CRITERION
),(mm uQ 

 PROCEDURE

),(min ,, mmKKK uQ
Dip



new Kp,Ki,Kd

Fig. 8.1.Schematic diagram of the PID parameters tuning

In the case of TRAS the following criterion is used to tune the PID

parameters for the all experiments described in the previous section

  dtuQ
kT

o

vvh  1.04
222 

where: 80kT [s] – simulation time ,
h - azimuth position error,

v - pitch

position error,
vu - pitch control. The 0.1 coefficient is the value of the pitch control

which keeps the beam in horizontal position.
Note, that selection of the criterion is a rather complicated and difficult task.

It is closely related to the project assumptions. The project assumptions consist a
basis for its construction.

The TRAS Toolbox includes the m-files to perform optimisation procedures
of PID controller parameters. These m-files are as follows:

 pid_azimuth.m

 pid_pitch.m

 pid_cross.m

 pid_simple.m.

TRAS User’s Manual -52-

Each of these files uses his own simulation model and the criterion m-file in
optimisation process. See the body of these files to learn how the optimisation
procedure is performed.

TRAS User’s Manual -53-

9. Description of the CTRAS class properties

The CTRAS is a MATLAB class, which gives the access to all the features

of the RTDAC/USB2 board equipped with the logic for the Twin Rotor
Aerodynamical System model. The RTDAC/USB2 board is an interface between
the control software executed by a PC computer and the power-interface
electronic of the TRAS model. The logic on the board contains the following
blocks:

 incremental encoder registers – two 32-bit registers to measure the
positions of the incremental encoders. There are two identical encoder
inputs, that are applied to measure the azimuth and pitch angles;

 incremental encoder resets logic. The incremental encoders generate
different output waves when the encoder rotates clockwise and counter-
clockwise. The encoders are not able to detect the reference (“zero”)
position. To determine the “zero” position the incremental encoder registers
have to be set to zero by the computer program;

 PWM generation blocks – generates the Pulse-Width Modulation output
signals applied to control the azimuth and pitch DC drives. Simultaneously
the direction signals and the brake signals are generated to control the
power interface module. The PWM prescalers determines the frequencies of
the PWM wave;

 power interface thermal flags –the thermal flags can be used to disable the
operation of the overheated DC motors;

 interface to the on-board analog-to-digital converter. The A/D converter is
applied to measure the output voltages from the tachogenerator.

All the parameters and measured variables from the RTDAC/USB2 board

are accessible by appropriate properties of the CTRAS class.
In the MATLAB environment the object of the CTRAS class is created by

the command:

object_name = CTRAS;

The get method is called to read a value of the property of the object:

property_value = get(object_name, ‘property_name’);

The set method is called to set a new value of the given property:

set(object_name, ‘property_name’, new_property_value);

The display method is applied to display the property values when the
object_name is entered in the MATLAB command window.

This section describes all the properties of the CTRAS class. The

description consists of the following fields:

Purpose Provides short description of the property

Synopsis Shows the format of the method calls

Description Describes what the property does and the
restrictions subjected to the property

Arguments Describes arguments of the set method

TRAS User’s Manual -54-

See Refers to other related properties

Examples Provides examples how the property can be used

9.2 BitstreamVersion

Purpose: Read the version of the logic stored in the

RTDAC/USB2 board.

Synopsis: Version = get(tr, ‘BitstreamVersion’);

Description: The property determines the version of the logic design for
the RTDAC/USB2 board. The TRAS models may vary and the
detection of the logic design version makes it possible to check if
the logic design is compatible with the physical model.

Example: Create the CTRAS object:
 tr = CTRAS;
 Display their properties by typing the command:
 tr

Type: CTRAS Object

Bitstream ver.: x40F

Encoder: [2 65517][bit]

Reset Encoder: [0 0]

Input voltage: [-0.01 -0.02][V]

PWM: [0 0]

PWM Prescaler: [1 1]

PWM Thermal Status: [0 0]

PWM Thermal Flag: [1 1]

Angle: [0.003068 -0.029146][rad]

RPM: [-19 -9][RPM]

Time: 753.7 [sec]

9.3 Encoder

Purpose: Read the incremental encoder registers.

Synopsis: enc = get(tr, ‘Encoder’);

Description: The property returns two digits. They are equal to the number of
impulses generated by the corresponding encoders. The encoder
counters are 16-bit numbers so the values of this property is from –
32768 to 32767. When an encoder counter is reset the value is set
to zero. The first encoder register corresponds to the azimuth
position and the second register corresponds to the pitch position.

 The incremental encoders generate 4096 pulses per rotation. The
values of the Encoder property should be converted into physical
units.

See: ResetEncoder, Angle, AngleScaleCoeff

TRAS User’s Manual -55-

9.4 Angle

Purpose: Read the angle of the encoders.

Synopsis: angle_rad = get(tr, ‘Angle’);

Description: The property returns two angles of the corresponding encoders.
The first value corresponds to the azimuth and the second to the
pitch position. To calculate the angle the encoder counters are
multiplied by the values defined as the AngleScaleCoeff property.
The angles are expressed in radians.

See: Encoder, AngleScaleCoeff

9.5 AngleScaleCoeff

Purpose: Read the coefficients applied to convert the encoder counter values
into physical units.

Synopsis: scale_coeff = get(tr, ‘AngleScaleCoeff’);

 Description: The property returns two digits. They are equal to the coefficients
applied to convert encoder impulses into radians. The incremental
encoders generate 4096 pulses per rotation so the coefficients are
equal to 2*pi/4096.

See: Encoder, Angle

9.6 PWM

Purpose: Set the direction and duty cycle of the PWM control waves.

Synopsis: PWM = get(tr, ‘PWM’);
 set(tr, ‘PWM’, [NewAzimuthPWM NewPitchPWM]);

Description: The property determines the duty cycle and direction of the PWM
control waves for the azimuth and pitch DC drives. The PWM waves
and the direction signals are used to control the DC drives so in fact
this property is responsible for the DC motor control signals. The
NewAzimuthPWM and NewPitchPWM variables are scalars in the
range from –1 to 1. The value of –1, 0.0 and +1 mean respectively:
the maximum control in a given direction, zero control and the
maximum control in the opposite direction to that defined by –1.

The PWM wave is not generated if the corresponding

thermal flag is set and the power amplifier is overheated.

See: PWMPrescaler, Therm, ThermFlag

Example: set(tr, ‘PWM’, [-0.3 0.0]);

TRAS User’s Manual -56-

9.7 PWMPrescaler

Purpose: Determine the frequency of the PWM waves.

Synopsis: Prescaler = get(tr, ‘PWMPrescaler’);
 set(tr, ‘PWMPrescaler’, [NewAzimuthPrescaler NewPitchPrescaler]

);

Description: The prescaler values can vary from 0 to 63. The 0 value generates
the maximal PWM frequency. The value 63 generates the minimal
frequency. The first prescaler value is responsible for the azimuth
PWM frequency and the second for the pitch PWM frequency. The
frequency of the generated PWM wave is given by the formula:

PWMfrequency = 40MHz / 1023 / (Prescaler+1)

See: PWM

9.8 Stop

Purpose: Sets the control signal to zero.

Synopsis: set(tr, ‘Stop’);

Description: This property can be called only by the set method. It sets the
zero control of the DC motors and is equivalent to the set(tr, ‘PWM’,
[0 0]) call.

See: PWM

9.9 ResetEncoder

Purpose: Reset the encoder counters.

Synopsis: set(tr, ‘ResetEncoder’, ResetFlags);

Description: The property is used to reset the encoder registers. The
ResetFlags is a 1x2 vector. Each element of this vector is responsible
for one encoder register (the first value controls the reset signal of the
azimuth encoder and the second controls the reset of the pitch
encoder). If the reset flag is equal to 1 the appropriate register is set to
zero. If the flag is equal to 0 the appropriate register counts encoder
impulses.

See: Encoder

TRAS User’s Manual -57-

Example: To reset only the first encoder register execute the command:
 set(tr, ‘ResetEncoder’, [1 0]);

9.10 Voltage

Purpose: Read two voltage values.

Synopsis: Volt = get(tr, ‘Voltage’);

Description: Returns the voltage of two analog inputs. The analog inputs are
applied to measure the output of the tachogenerators.

See: RPM

9.11 RPM

Purpose: Read velocity of the propelers.

Synopsis: RPM = get(tr, ‘RPM’);

Description: Returns the velocities of the propellers. The property contains two
values. The first one is equal to the azimuth propeller velocity. The
second one is equal to the pitch propeller velocity.

See: Voltage, RPMScaleCoeff

9.12 RPMScaleCoeff

Purpose: Read the coefficients applied to convert the tachgenerator voltage
values into physical units.

Synopsis: scale_coeff = get(tr, ‘RPMScaleCoeff’);

Description: The property returns two digits. They are equal to the coefficients
applied to convert tachogenerator voltages into RPMs.

See: Voltage, RPM

9.13 Therm

Purpose: Read thermal status flags of the power amplifiers.

TRAS User’s Manual -58-

Synopsis: Therm = get(tr, ‘Therm’);

Description: Returns the thermal flag of the power amplifier. When the
temperature of a power amplifier is too high the corresponding flag is
set to 1. The property contains two flags. The first one corresponds to
the thermal status of the power interface for the azimuth DC drive.
The second one corresponds to the thermal status of the pitch power
amplifier.

See: ThermFlag

9.14 ThermFlag

Purpose: Control an automatic power down of the power amplifiers.

Synopsis: ThermFlag = get(tr, ‘ThermFlag’);
 set(tr, ‘ThermFlag’, [NewAzimuthThermFlag

NewPitchThermFlag]);

Description: If the NewAzimuthThermFlag or/and NewPitchThermFlag are equal
to 1 the azimuth or/and DC motors are not excited by from the PWM
waves when the corresponding power interfaces is overheated.

See: Therm

9.15 Time

Purpose: Return time information.

Synopsis: T = get(tr, ‘Time’);

Description: The CTRAS object contains the time counter. When a CTRAS
object is created the time counter is set to zero. Each reference to the
Time property updates its value. The value is equal to the number of
milliseconds which elapsed since the object was created.

TRAS User’s Manual -59-

9.16 Quick reference table

Property name
Op

eration
* Description

BaseAddress R
Read the base address of the

RTDAC/USB2 board

BitstreamVersio
n

R
Read the version of the logic design for

the RTDAC/USB2 board

Encoder R Read the incremental encoder registers

Angle R Read the angles of the encoders

AngleScaleCoef
f

R
Read the coefficients applied to convert

encoder positions into radians

PWM
R+

S
Read/set the parameters of the PWM

waves

PWMPrescaler
R+

S
Read/set the frequency of the PWM

waves

Stop S Set the control signal to zero

ResetEncoder
R+

S
Reset the encoder counters or read the

reset flags

Voltage R Read the input voltages

RPM R Read velocities of the propelers

RPMScaleCoeff R
Read the coefficients applied to convert

tachogenerator voltages into RPMs

Therm R
Read the thermal flags of the power

amplifiers

ThermFlag
R+

S
Read/set the automatic power down flags

of the power amplifiers

Time R Read time information

 R – read-only property, S – allowed only set operation, R+S –property may be
read and set

9.17 CTRAS Example

To familiarise a reader with the CTRAS class this section presents an

M-file example that uses the properties of the CTRAS class to measure the
static characteristics of the DC motor. The static characteristics is a diagram
showing the relation between DC motor control signal and the velocity of the
propellers. The M-file changes the control signal and waits until the system

TRAS User’s Manual -60-

reaches a steady-state. The velocity of the propeller is proportional to the
voltage generated by the tacho-generator.

The M-file is written in the M-function form. The name of the M-function
is TRAS_PWM2RPM. The body of this function is given below. The comments
within the function describe the main measurement stages.

The function requires five parameters:

 SelectRotor – selects the propeller used during the measurements. Available
values are: 'A' for azimuth propeller, 'P' for pitch propeller and 'AP' for both
propellers.

 CtrlDirection - a string that selects how to change the control value. The 'A'
string causes the control is changed in ascending manner (from minimal to
maximal control value), the 'D' string causes the control is changed in
descending order (from maximal to minimal value) and the 'R' string causes
reverse double changes (from minimal to maximal and after that from maximal
to minimal control values),

 MinControl, MaxControl- minimal and maximal control values. The control
values must be set within the –1.0 to +1.0 range,

 NoOfPoints - number of characteristic points within the range where changes
the control signal. The exact number of points of the characteristics declared
by this parameter is enlarged to two points namely at the ends of the control
range.

function ChStat = ...

 TRAS_PWM2RPM(SelectRotor, CtrlDirection, ...

 MinControl, MaxControl, NoOfPoints)

SelectRotor = lower(SelectRotor);

CtrlDirection = lower(CtrlDirection);

NoOfPoints = max(1, NoOfPoints-1);

% Control step

Step = (MaxControl-MinControl) / NoOfPoints;

switch CtrlDirection

 case 'a'

 Ctrl = MinControl:Step:MaxControl;

 case 'd'

 Ctrl = MaxControl:-Step:MinControl;

 case 'r'

 Ctrl = [MinControl:Step:MaxControl MaxControl:-Step:MinControl];

 otherwise % This should not happen

 error('The CtrlDirection must be ''A'',''D'' or ''R''.')

end

switch SelectRotor

 case 'a'

 ACtrl = Ctrl; PCtrl = 0*Ctrl;

 case 'p'

 ACtrl = 0*Ctrl; PCtrl = Ctrl;

 case { 'ap', 'pa' }

 ACtrl = Ctrl; PCtrl = Ctrl;

 otherwise % This should not happen

 error('The SelectRotor must be ''A'', ''P'' or ''AP''.')

TRAS User’s Manual -61-

end

FigNum = figure('Visible', 'on', ...

 'NumberTitle', 'off', ...

 'Name', 'Rotor velocity vs. PWM characteristic', ...

 'Menubar', 'none');

tr = ctras;

ret = [];

for i=1:length(Ctrl)

 set(tr, 'PWM', [ACtrl(i) PCtrl(i)]);

 pause(10)

 ret(i,1) = Ctrl(i);

 AuxVolt = [0 0];

 for j=1:10

 AuxVolt = AuxVolt + get(tr, 'RPM');

 end

 ret(i,2:3) = AuxVolt/10;

 AuxVolt = 0;

 for j=1:10

 AuxVolt = AuxVolt + get(tr, 'AD', 10);

 end

 ret(i,4) = AuxVolt/10;

 plot(ret(:,1), ret(:,2:3), 'x');

 hold on; plot(ret(:,1), ret(:,2:3)); hold off; grid

 title('RPM vs. PWM'); xlabel('PWM control value'); ylabel('Rotor

velocity [RPM]');

end

ChStat.Control = ret(:,1);

ChStat.RPM = ret(:,2:3);

ChStat.Force = ret(:,4);

% Switch off the control

set(tr, 'PWM', [0 0]);

% Set return variable

ChStat.Control = ret(:,1);

ChStat.RPM = ret(:,2:3);

ChStat.Force = ret(:,4);

% Switch off the control signals

set(tr, 'PWM', [0 0]);

The diagram generated by the call:

 tras_pwm2rpm('ap', 'r', -0.5, 0.5, 11)
is shown below. Two curves represent static characteristics of the

azimuth and pitch propellers.

TRAS User’s Manual -62-

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-6000

-4000

-2000

0

2000

4000

6000
RPM vs. PWM

PWM control value

R
o
to

r
v
e
lo

c
it
y
 [

R
P

M
]

Fig. 9.1 Static characteristics

