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1. Introduction 

 

The Two Rotor Aero-dynamical System (TRAS) is a laboratory set-up 
designed for  control experiments. In certain aspects its behaviour resembles that 
of a helicopter. From the control point of view it exemplifies a high order non-linear 
system with significant cross-couplings.  The system is controlled from a PC. 
Therefore it is delivered with hardware and software which can be easily mounted 
and installed in a laboratory. You obtain the mechanical unit with power supply 
and interface to a PC and the dedicated RTDAC/USB2 I/O board configured in the 

Xilinx technology. The software operates in real time under MS Windows7 x86 

or x64 using MATLAB, Simulink and RTW toolboxes. Real-time is supported by 
the RT-CON toolbox from INTECO. 

Control experiments are programmed and executed in real-time in the 
MATLAB/Simulink environment. Thus it is strongly recommended to a user  to be 
familiar with the RTW toolbox. One has to know how to use the attached models 
and how to create his own models. 

The approach to control problems corresponding to the TRAS proposed in 
this manual involves some theoretical knowledge of laws of physics and some 
heuristic dependencies difficult to be expressed in analytical form.  
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Fig. 1.1 The laboratory set-up: helicopter-like system 

 
A schematic diagram of the laboratory set-up is shown in Fig. 1.1.The 

TRAS consists of a beam pivoted on its base in such a way that it can rotate freely 
both in the horizontal and vertical planes. At both ends of the beam there are 
rotors (the main and tail rotors) driven by DC motors. A counterbalance arm with a 
weight at its end is fixed to the beam at the pivot. The state of the beam is 
described by four process variables: horizontal and vertical angles measured by 
position sensors  fitted at the pivot, and two corresponding angular velocities. Two 
additional state variables are the angular velocities of the rotors, measured by 
tacho-generators coupled with the driving DC motors.  
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In a casual helicopter the aerodynamic force is controlled by changing the 
angle of attack. The laboratory set-up from Fig. 1.1 is so constructed that the 
angle of attack is fixed. The aerodynamic force is controlled by varying the speed 
of rotors. Therefore, the control inputs are the supply voltages of the DC motors. A 
change in the voltage value results in a change of the rotation speed of the 
propeller which results in a change of the corresponding position  of the beam. 
Significant cross-couplings are observed between the actions of the rotors: each 
rotor influences both position angles. Designing of stabilising controllers for such a 
system is based on decoupling. For a decoupled system an independent control 
input can be applied for each coordinate of the system.  

An IBM-PC compatible computer can be used for real-time control of 
TRAS. The computer must be supplied with an interface board (RTDAC/USB2). 
Fig. 2.5 Measurements of the beam motion shows details of the hardware 
configuration of the  control system  for TRAS. 
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Fig. 1.2 Hardware configuration of the TRAS 

 
The control software for the TRAS is included in the TRAS toolbox. This 

toolbox uses the  RTW toolbox from MATLAB and the RT-CON toolbox from 
INTECO. 

TRAS Toolbox is a collection of M-functions, MDL-models  and C-code 
DLL-files that extends the MATLAB environment in order to solve TRAS 
modelling, design and control problems. The integrated software supports all 
phases of a control system development: 

 on-line process identification, 

 control system modelling,  design and simulation, 

 real-time implementation of control algorithms.  
 

TRAS Toolbox is intended to provide a user with a variety of software tools 
enabling:  

 on-line  information flow between the process and  the MATLAB 
environment, 

 real-time control experiments using demo algorithms, 
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 development, simulation and application of user-defined control 
algorithms. 

1.2 Hardware and software requirements. 

TRAS Toolbox is distributed on a CD-ROM. It contains the software and 
TRAS User’s Manual. The Installation Manual is distributed in a printed form. 

 

Hardware 
Hardware installation is described in the Installation manual. It consists of: 

 TRAS Mechanical Unit, 

 Power interface and wiring allowing electrical connections to the TRAS set, 

 RTDAC/USB2  I/O board. The board contains FPGA equipped with 
dedicated logic, 

 Pentium or AMD based personal computer. 
 

Software 

 Microsoft Windows W7/W10x64 and MATLAB 64 bit with Simulink, and 
RTW (Simulink Coder)  toolboxes (not included),  

 Third party compiler MS Visual C++ depending on Matlab’s version 

 Details at:  
https://www.mathworks.com/support/sysreq/previous_releases.html 

 
and 

The TCP/IP protocol must be installed in the computer system,  
 
 

 

 Details of the required software are available at:  

 http://www.inteco.com.pl/support/Software_requirements.pdf 

 
 

 

 

Real-time is supported by the RT-CON toolbox from INTECO 

(included in TRAS Toolbox and transparent for a user). 

 

 

 

Manuals: 

 Installation Manual 

 User’s Manual 
 

 

 

The experiments and corresponding to them measurements 

have been conducted by the use of the standard INTECO systems. 

Every new system manufactured and developed by INTECO can be 

slightly different to those standard devices. It explains why a user can 

obtain results that are not identical to these given in the manual. 

 

https://www.mathworks.com/support/sysreq/previous_releases.html
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1.3 FEATURES of TRAS 

 A highly nonlinear MIMO system ideal for illustrating complex control 
algorithms. 

 The system can be easily installed. 

 The set-up is fully integrated with MATLAB/Simulink and operates in real-

time in MS Windows . 

 Real-time control algorithms can be rapidly prototyped. No C code 
programming is required. 

 The software includes complete dynamic models. 

 The User’s Manual, library of basic controllers and a number of pre-
programmed experiments familiarise the user with the system in a fast way. 

 

Application note 
The documentation assumes that the user has a basic experience with 

MATLAB, Simulink, and RTW toolboxes from MathWorks Inc.  
 

1.4 Software installation 

Insert the installation CD and proceed step by step following displayed 
commands. 
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2. Starting and testing procedures 

 
The TRAS system is an “open” type. It means that a user can design and 

solve any TRAS control problem on the basis of the attached hardware and 
software. The software includes device drivers compatible with RTW toolbox. It is 
assumed that a user is familiarised with MATLAB tools especially with RTW 
toolbox. Therefore we do not include the detailed description of this tool. 

The user has a rapid access to all basic functions of the TRAS System 
from the TRAS Control Window. It includes: identification, drivers, simulation 
model and application examples. 
 
Open Matlab  
 

 

 

 If the MATLAB R2018 or newer is used run command rehash 

toolbox, close Matlab and open again. 

  

 
then type:   

Tras 

 
and the TRAS Control Window opens (see Fig. 2.1) 
 

 
 

Fig. 2.1 TRAS Control Window 

 
TRAS Control Window contains testing tools, drivers, models and demo 

applications..  
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2.2 Testing and troubleshooting  

 
This section explains how to perform the tests. One can check if 

mechanical assembling and wiring has been done correctly. The tests have to be 
performed obligatorily after assembling the system. They are also necessary if an 
incorrect operation of the system happens. Due to the tests sources of the system 
fails can be tracked. The tests have been designed to validate the existence and 
sequence of measurements and controls. They do not relate to accuracy of the 
signals.  

 
At the beginning one has to be sure that all signals are transmitted and 

transferred in a proper way. The following steps are applied: 
 

 Double click the Basic Tests button. The Basic Test window appears (Fig. 
2.2) 
 

 

Fig. 2.2 The Basic Tests window 

 
The experiment may be stopped in any time. Double click on the Stop block 

in the TRAS Control Window or somewhere else. If you wish to stop the 
visualisation process click once on the Stop bar in the Simulation menu.  

 
The first step in the Modular Servo System testing is to check if the 

RTDAC/USB2 measuring and control board is installed properly.  
 

 Double click the Detect RTDAC/USB board button. One of the messages 
shown in Fig. 2.3 opens. If the board has been correctly installed the left 
window is displayed. 
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Fig. 2.3 Result of the step 1 

If the board is not detected then check whether the board has been 
powered. The boards are checked very precisely before sending to a customer. In 
principle, a wrong assembling is the only reason of  no detecting the board. 

 
The next step consists in resetting the encoders. It means that the initial 

position of the beam is stored in the memory. 

 Double click the Reset Angles button. When Fig. 2.4 opens, move the 
TRAS system to the origin position and then click the Yes option. The 
encoders reset and zero positions of the beam are going to be 
remembered so long as an measurement error occurs.  
 

 

Fig. 2.4 The Reset Angles window 

Double click the Check Angles button. When the window opens click Yes, 
then, move by hand the beam of the TRAS in all directions and observe 
measurements on the screen (see Fig. 2.5). 

 

 

Fig. 2.5 Measurements of the beam motion 
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In the next step one checks if the main and tail motors work properly.  
Double click the Open loop control button. When Fig. 2.6 opens one can to 

set the control inputs to the main and tail motor. The vertical axis corresponds to 
the main  motor and the horizontal axis corresponds to the tail motor. When you 
locate the mouse pointer at [0 0.5] and click, then the control equal to 0.5 is set for 
the main motor. And if you click at [0.5 0] the control 0.5 is set for the tail motor. 
Using the mouse, click and slowly drug a rectangle. The motors rotate with respect 
to the mouse pointer location (the intersection of the green and red lines in Fig. 
2.6). The red ends of the blue lines show the rotational velocities of the propellers. 
If  the rectangle movement of the mouse is finished a picture similar to that given 
in  Fig. 2.6 should be visible.  

 

 

Fig. 2.6 Motors control and  checking of tacho-generators 

 

Troubleshooting 
 

Message or faulty action Solution 

Board not detected Check connecting of the board. 
Check if power switch is ON 

Angles measurements failed Check the Enc socket and wiring 

Propellers do not rotate Check M socket, Mains and ON 
switch 

Velocities are not measured Check T socket and wiring 
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3. TRAS Control Window 

 
The user has a rapid access to all basic functions of the TRAS control 

system from TRAS Control Window. It includes tests, drivers, models and 
application examples.  

 
TRAS Control Window shown in Fig. 2.1 contains four groups of the menu 

items: 
 

 Tools  - Basic Test, Manual Setup, Reset Encoders and Stop Experiment, 

 Drivers - USB Device Driver,  

 Simulation Models: Pitch , Azimuth and  2-DOF model, 

 Identification - Steady State Characteristics, 

 Demo Controllers – PID azimuth, PID pitch and  cross-coupled PID 
controller 

 

3.2 Basic test 

The Basic Test  tool was described in the previous section. 
 

3.3 TRAS Manual Setup 

 
The TRAS Manual Setup program gives access to the basic parameters of 

the laboratory Two Rotor Aerodynamical System setup.  
To run the Manual Setup in Windows XP click the ManualSetup button. If 

you are using Windows 7 do not use this button. Open windows explorer, find the 
ManualSetup.exe file in the matlabroot/toolbox/Tras/ManualSetup directory and 
double click this file.  

The most important data transferred from the RTDAC/USB2 board and the 
measurements of the TRAS may be shown. Moreover, the control signals may be 
set. 

 
The application contains four frames (see Fig. 3.1): 
 

 RTDAC/USB2 board, 

 Encoders, 

 Control and  

 Tacho. 
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Fig. 3.1 View of the TRAS Manual Setup window 

 
All the data accessible from the TRAS Manual Setup program are updated 

10 times per second. 
 

 RTDAC/USB2 board frame 
The RTDAC/USB2 board frame presents the main parameters of the USB 

board. 

 
No of detected boards 
Reads the number of detected RTDAC/USB2 boards. If the number is 

equal to zero it means that the software has detected none of the RTDAC/USB2 
board. When more then one board is detected the Board list must be used to 
select the board that communicates with the program. 

 
Board 
Contains the list applied to the selected board currently used by the 

program. The list contains a single entry for each RTDAC/USB2 board installed in 
the computer. A new selection executed at the list automatically changes values of 
the remaining parameters. 

 
Logic version 
The number of the configuration logic of the on-board FPGA chip. A logic 

version corresponds to the configuration of the RTDAC/USB2 boards defined by 
this logic. 

 
Application 
The name of the application the board is dedicated for. The name contains 

four characters.  

 
I/O driver status 
The status of the driver that allows the access to the I/O address space of 

the microprocessor. The status has to be OK string. In the other case the driver 
HAS TO BE INSTALLED. 

 



TRAS User’s Manual -14- 
 

Encoders frame 
The state of the encoder channels is given in the Encoder frame. The 

encoders are applied to measure the azimuth and pitch angles. 
 
Azimuth, Pitch 
The values of the encoder counters, the angles expressed in radians and 

the encoder reset flags are listed in the Azimuth and Pitch rows.  

 
Value 
The values of the encoder counters are given in the respective columns. 

The values are 16-bit integer numbers. When an encoder remains in the reset 
state the corresponding value is equal to zero. 

 
Angle [rad] 
The angular positions of the encoders expressed in radians are given in the 

respective columns. If the encoder remains in the reset state the corresponding 
angle is equal to zero. 

 
Reset 
When the checkbox is selected the corresponding encoder remains in the 

reset state. The checkbox has to be unselected to allow the encoder to count the 
position. 

 

Control frame 
The Control frame allows to change the control signals. DC drives are 

controlled by PWM signals. 

 
Azimuth and Pitch edit fields and sliders 
The control edit boxes and the sliders are applied to set a new control 

values of the corresponding DC drives. The control value may vary from –1.0 to 
1.0. 

 
STOP 
The pushbutton is applied to switch off the control signals. If it is pressed 

then both the azimuth and pitch control values are set to zero. 

 
Azimuth and Pitch PWM prescaler 
The divider of the PWM reference signal is given. The frequency of the 

corresponding PWM control is equal to: 

][
)1(

40
KHz

erPWMprescal
f pwm


  

 
Azimuth and Pitch Thermal flag / status 
The thermal flags and the thermal statuses of the power amplifiers. If the 

thermal status box is checked the corresponding power interface is overheated. If 
the power interface is overheated and the corresponding thermal flag is set the 
RTDAC/USB2 board switches off the PWM control signal corresponded to the 
overheated power amplifier. 
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Tacho frame 
The Tacho frame displays two measured analog signals generated by the 

tacho-generators. The voltages and the corresponding velocities of the propellers 
are displayed. 

 
Azimuth and Pitch Voltage [V] 
Displays the voltage at the outputs of the tacho-generators. 
 
Azimuth and Pitch Velocity [RPM] 
Displays the velocity of the propellers. The velocities are calculated based 

on the corresponding voltages and are given in RPM. 
 
 

3.4 USB Device Driver 

The driver is a software go-between for the real-time MATLAB environment 
and the RTDAC/USB2 I/O board. The control and measurements are transferred. 
Click the TRAS Device Driver button and the driver window opens (Fig. 3.2). 

 

 

Fig. 3.2 USB2 Device Driver 

When one wants to build his own application one can copy this driver to a 
new model. The Reset Encoder  input can be used in the real-time mode only.  

 

 

Do not do any changes inside the original driver. They can be 

introduced only inside its copy!!! Make a copy of  the installation CD 

 

The device driver has two inputs: control  11)( tu  and signal Reset. If 

signal Reset changes to one the encoders are reset and do not work. If signal 
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Reset is equal to zero encoders normally work. It is important that Reset switch 
works only if the real-time code is executed. It means that changing the state of 
the switch, when real time mode is not running, is not effective. However when 
switching occurs while the real time is running, the encoder resets and starts 
measure when the switch returns to the zero (normal) position. 

 
The details of the device driver are depicted in Fig. 3.3. The driver uses  

functions which communicates directly with a logic stored at the RTDAC/USB2 
board.  
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Fig. 3.3 Interior of the USB2 device driver 

 

3.5 Simulation Models 

There are three simulation models available for  the TRAS system. The first 
one is a 1-DOF (degree of freedom) azimuth model. This model simulate 
behaviour of the system in the horizontal plane only. Click the 1-DOF Azimuth 
Simulation Model button to open the model shown in Fig. 3.4. Next, click the 
subsystem block to see details of the model. 

ctrl_a 
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TRAS
azimuth
model

Step1
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0
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Fig. 3.4 The Azimuth Simulation model and its interior 

A 1-DOF pitch is the second model. It describes behaviour of the system in the 
vertical plane. Click the 1-DOF Pitch Simulation Model button and click the 
subsystem block to see the 1-DOF pitch model and its interior (see Fig. 3.5) 
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Fig. 3.5 The Pitch Simulation model and its interior 

The third one is the complete simulation model. It describes movements in both 
planes with an interaction between the pitch and azimuth axes. Click the 2-DOF 
Simulation Model button and the subsystem block to see the model and its interior 
(see Fig. 3.6) 
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Fig. 3.6 The 2-DOF simulation model and its interior 
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4. Model and parameters 

 
Modern methods of design and adaptation of real time controllers require 

high quality mathematical models of the system. For high order, non-linear cross-
coupled systems classical modelling methods (based on Lagrange equations ) are 
often very complicated. That is why a simpler approach is often used, which is 
based on block diagram representation of the system which is very suitable for the 
SIMULINK environment. The relations between the block diagram and 
mathematical model of the TRAS are explained in sections 4.2 – 4.5. 
 Fig. 4.1. shows an aero-dynamical system considered in this manual. At 
both ends of a beam, joined to its base with an articulation, there are two 
propellers driven by DC-motors. The articulated joint allows the beam to rotate in 
such a way that its ends move on spherical surfaces. There is a counter-weight 
fixed to the beam and it determines a stable equilibrium position. The system is 
balanced in such a way, that when the motors are switched off, the main rotor end 
of beam is lowered. The controls of the system are the motor supply voltages. 
 The measured signals are: position of the beam in the space that is two 
position angles and angular velocities of the rotors. Angular velocities of the beam 
are software reconstructed by differentiating and filtering  measured position 
angles of the beam. 
 
 

 

DC-motor + 

  tacho 

tachopradnicą 

 DC-motor  + 

   tacho 

main rotor tail rotor 

free-free beam 

Counter balance 

articulation 

main shield  tail shield 

 
 
 

Fig. 4.1. Aero-dynamical model of  TRAS 

 
 
The block diagram of the TRAS model is shown in Fig. 4.2.  The control 

voltages 
hU  and 

vU  are inputs to the DC-motors which drive the rotors (PWM 

mode).  
A rotation of the propeller generates an angular momentum which, 

according  to the law of conservation of angular momentum, must be 
compensated  by the remaining body of the TRAS beam. This results in the 
interaction between two transfer functions, represented by the moment of inertia 
of the motors with propellers vhhv kk  and  (see Fig. 4.2). This interaction directly 

influences the velocities of the beam in both planes. The forces 
hF  and 

vF  
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multiplied by the arm  lengths )( vhl  and 
vl  are equal to the torques acting on the 

arm. 
 

                                            

Kv v 
1/s 1/s 1/Jv 

fv DC-Motor with 
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lh(v) 
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h 
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1/Jh(v) 

Fh 

Fv 

khv 

kvh 

Ghh,h) 

Gvv,v) 

cos (..) 

 
 

Fig. 4.2 Block diagram of the  TRAS  model 

 
The following notation  is used  in Fig. 4.2: 

h   - horizontal position  (azimuth position)  of  TRAS  beam  [ rad]; 

h   - angular   velocity  (azimuth velocity) of  TRAS beam [rad/s]; 

hU   - horizontal DC-motor  PWM control input ; 

h  - rotational speed of tail rotor [rad/s] - non-linear function 

)t(U=Hω hhh  [rad/s] ; 

hF  - aerodynamic force from  tail rotor - non-linear function    

)(w=FF hhh  [N]; 

hl    - effective arm of aerodynamic force from tail rotor  )(a=ll vhh  [m]; 

          
hJ  - non-linear function of moment of inertia with respect to vertical 

axis, )(aJJ vhh   [kg m
2
]; 

hM  - horizontal turning  torque  [ Nm]; 

hK  - horizontal angular momentum  [N m s]; 

hf   - friction coefficient  in a horizontal plane [N m]; 

v   - vertical position  (pitch position)  of  TRAS beam  [ rad]; 

v   - angular   velocity  (pitch velocity) of  TRAS beam [rad/s]; 

vU  - vertical DC-motor PWM voltage control input; 

v  - rotational speed of  main rotor - non-linear function  

t)(U=Hω vvv   [rad/s]; 
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vF  - aerodynamic force from  main rotor - non-linear function 

)(ωFF vvv  [N]; 

vl    - arm of aerodynamic force from  main rotor  [m]; 

vJ   - moment of inertia with respect to  horizontal  ax- [kg m
2
]; 

vM  - vertical turning  moment  [ Nm]; 

vK   - vertical angular momentum  [Nms]; 

vf    - friction coefficient in a vertical plane  [Nm]; 

vR    - vertical returning moment   ),Ω(αRffR hvhgcfh  [Nm]; 

hvJ   - vertical angular momentum  from tail rotor   [Nms]; 

vhJ   - horizontal  angular momentum  from main rotor  [Nms]; 

vH   - differential equation    tUH vvv , ; 

hH  -  differential equation    tUH hhh , ; 

vG    - aerodynamical dumping torque from main rotor    vvvG , ; 

hG    - aerodynamical dumping torque from tail  rotor      hhhG , . 

hR    -  moment of centrifugal force     hvhR , . 

 
 
 
Controlling the system consists in stabilising the TRAS beam in an arbitrary 

(within practical limits) desired position (pitch and azimuth) or making it track a 
desired  trajectory. Both goals may be achieved by means of appropriately  
chosen controllers. The user can select between two types of  PID controllers and  
a state feedback  controller (see section 6). 

 
 

4.2 Non-linear model 

 
Available after purchasing the system. 
  

4.3 State equations 

Available after purchasing the system. 
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4.4 Static characteristics 

 
It is necessary to identify the following functions: 
 

 Two non-linear input characteristics determining dependence of the DC-motor 

rotational speed on the input voltage (RPM characteristics): )(UHω vvv  , 

)(UHω hhh   

 
To measure the characteristics double click the Static characteristics button 

in TRAS Control Window. The window given in Fig. 4.3 opens. In this window one 
defines the minimal and maximal control values and a number of measured 
points. The control order can be set as: Ascending, Descending or Reverse. Also 
one can choose the pitch or azimuth static characteristic. Note, that the control 
signal is normalised and changes in the range  

[-1, +1] what corresponding to the input voltage range [-24V, +24V] . 
 

 
 

Fig. 4.3 Parameters of measurement of static characteristics 

 
Choose Azimuth axis (tail rotor) and click the Run button. The constant 

value of control activates the DC motor so long as is required to obtain a steady 
state of the shaft angular velocity. Then, the velocity is measured and the control 
value is changed to the next constant value and DC motor is activated again. 
These steps are repeated to the end of the control range. This action should be 
repeated for pitch axis (main rotor) to obtained the both characteristics. Examples 
of the measured static characteristic for the main and tail rotors are shown in Fig. 
4.4. 
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Fig. 4.4. Main and tail rotor static characteristics 

 
If the characteristics is measured in Reverse mode (the control has been 

changed from –1 to +1 and reverse), there are two slightly different plots.   
 

 Two non-linear  characteristics determining dependence of the propeller thrust 
on DC- motor  rotational speed (thrust characteristics): 

  )vv=v hhh (ωF)  , F(ω=FF . 

 
The thrust static characteristics of the propellers should be measured in the 

case when the propellers were changed by a user. In this case a proper electronic 
balance (no delivered with the system) is necessary to measure the force created 
by rotational movements of the propellers. The characteristics included in the 
TRAS Toolbox and shown in this section were obtained by the manufacturer of the 
TRAS. 
 
 
 

4.4.1 Main rotor thrust characteristics 
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Fig. 4.5 Measuring of the main rotor thrust characteristics 

 
To perform measurements  correctly block the beam so that it could not 

rotate around  the vertical axis, place the electronic balance under the beam in 
such a way that it is pulled  by the propeller  straight up. To balance the beam in 
the horizontal position attach  a weight to the beam (as in Fig. 4.5) .  

 

  

Fig. 4.6 Measured  static thrust characteristics of the main rotor 

 For further applications the measured characteristics should be replaced by 
their polynomial approximations. For this purposes one can use the MATLAB 
polyfit.m function. An example is given in Fig.3.6. The obtained polynomials have 
the form: 
 

0.014 -  103.5   102.7   104.1   107.8 -  101.8 -  
~ -52-83-114-165-18

vvvvvvF    

4.5 -  106.1   31 -  109.2 -  101.3   101.1   101.1 -  105.2 -  ~ 323342546273

vvvvvvvv UUUUUUU 
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Fig. 4.7 Polynomial approximation of the main rotor characteristics  

 
 

4.4.2 Tail rotor thrust characteristics 

 
  Fig. 4.8 shows laboratory set-up for measuring thrust of the tail rotor.   

e l e c t r o n i c

  b a l a n c e

r o p e

b a l a n c e

 w e i g h t

 
 

Fig. 4.8 Laboratory set-up for the tail rotor thrust characteristics 

 
To measure the static thrust characteristics one should to rearrange the 

laboratory set-up as shown in Fig. 4.8 and the electronic balance should be used.  
 

The measured by the producer of the TRAS thrust static characteristics of 
the tail motor are given in Fig. 4.9. 
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Fig. 4.9  Thrust characteristics measured for the tail rotor. 

 
For further applications the characteristics can be replaced by their 

polynomial approximations. For this purposes one can use the MATLAB polyfit.m 
function. The obtained  polynomials are as follows: 
   

1009010121037102310141062
~ 529312417520 .  ω.  ω. - ω. ω.  ω.- F v

-

h

-

h

-

h

-

h

-

h   

291089103105410711022~ 322334253 .  - U.   U   U.  - U.  - U. ω vvvvhh   

 

Fig. 4.10 Polynomial approximation of tail rotor characteristics 
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5. Real-time model  

 
In this section the process of building your own control system is described. 

The RT-CON  toolbox is used. An example how to use the TRAS software is 
shown later in section 5.3.  In this section we give indications how to proceed in 
the real-time environment. 

 

 

 
Before starting, test your MATLAB configuration and compiler 

installation by building and running an example of a real-time application. 
MSS toolbox includes the real-time model of  PC speaker.  

The model pc_speaker_xxx.mdl does not have any I/O blocks so that 
you can run this model regardless of the I/O boards in your computer. 
Running this model will test the installation by running Real-Time 
Workshop, and your third-party C compiler. 

 
In the MATLAB command window, type 

 

pc_speaker_vc          (if you are using Visual C++ compiler) 
 
Build and run this real-time model as follows: 

 From the Tools menu, point to Real-Time Workshop, and then click 
Build Model.  

The MATLAB command window displays the following messages.  
 
### Starting Real-Time Workshop build procedure for model: pc_speaker_vc 

### Generating code into build directory: C:\apps\MATLAB\R2xxxx\work\ 

pc_speaker_vc_RTCON 

### Invoking Target Language Compiler on pc_speaker_vc.rtw. . . 

.. . . 

### Created RT-CON executable: pc_speaker_vc.dll  
### Successful completion of Real-Time Workshop build procedure for model: 

pc_speaker_vc 

 

 From the Simulation menu, click External, and then click Connect to 
target.  

The MATLAB command window displays the following message.  
Model pc_speaker_vc loaded 
 

 From Simulation menu, click Start real-time code.  
The Dual scope window displays the output signals. 

 
Only correct configuration of the MATLAB, Simulink, RTW and C 

compiler guaranties the proper operation of the TRAS system. 

 

 

Only correct configuration of the MATLAB, Simulink, RTW and 

C compiler guaranties the proper operation of the system. 
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To build the system that operates in the real-time mode the user has to: 

 create a Simulink model of the control system which consists of TRAS 
Device Driver and other blocks chosen from the Simulink library, 

 build the executable file under RT-CON (see Fig. 5.1), 

 start the real-time code from the Simulation/Start real-time code pull-
down menus; in this way the system runs in the real-time. 

 

 

Fig. 5.1. Creating the real-time code using RTW and RT-CON 

 

5.2 Creating a model  

The simplest way to create a Simulink model of the control system is to use 
one of the models included in Tras Control Window as a template.  For example, 
click on the PID Azimuth button and save it as MySystem.mdl name. The 
MySystem Simulink model is shown in Fig. 5.2. 
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Fig. 5.2  The MySystem Simulink model 

 
Now, you can modify the model. You get absolute freedom to develop your 

own controller. Remember to leave the Tras Device driver model in the window. 
This is necessary to work in the real-time environment.  

Though it is not obligatory, we recommend you to leave the scope. You 
need a scope to watch how the system runs. The saturation blocks are built in the 
Tras driver block. They limit the currents to the DC motors for safety reasons. 
However they are not visible for the user who may complain that the controls 
saturate despite it would not been predicted. Other blocks remaining in the 
window are  not necessary for our new project. 

Creating your own model on the basis of an old example ensures that all-
internal options of the model are set properly. These options are required to 
proceed with compiling and linking in a proper way. To put the Tras Device Driver 
into the real-time code a special make-file is required. This file is included to the 
TRAS software.   

You can apply most of the blocks from the Simulink library. However, some 
of them cannot be used (see RTW and RTWT reference manuals). 

The scope block properties are important for an appropriate data 
acquisition and watching how the system runs.  

The Scope block properties are defined in the Scope property window (see 
Fig. 5.3). This window opens after the selection of the Scope/Properties tab. You 
can gather measurement data to the Matlab Workspace marking the Save data to 
workspace checkbox. The data is placed under Variable name. The variable 
format can be set as structure or matrix. The default Sampling Decimation 
parameter value is set to 1. This means that each measured point is plotted and 
saved.  Often we select the Decimation parameter value equal to 5 or 10. This is a 
good choice to get enough points to describe the signal behaviour and to save the 
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computer memory. In this case the time space of the plot is equal to 0.01 [s]. 
Remember mark the Limit data points to last  checkbox. 

 

  

Fig. 5.3 Setting the parameters of the Scope block 

When the Simulink model is ready, click the Tools/External Mode Control 
Panel option and next click the Signal Triggering button. The window presented in 
Fig. 5.4 opens. Select Select All check button, set Source as manual, set Duration 
equal to the number of samples you intend to collect, and close the window. 

 

 

Fig. 5.4 The External Signal & Triggering window 
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5.3 Code generation and the build process 

Once a model of the system has been designed the code for real-time 
mode can be generated, compiled, linked and downloaded into the processor.  

The code is generated by the use of  Target Language Compiler (TLC) (see 
description of Simulink Target Language). The make-file is used to build and 
download object files to the target hardware automatically.  

At the beginning you have to specify the simulation parameters of your 

Simulink model in the Simulation parameters dialog box. The RTW page appears 
when you select the RTW tab (Fig. 5.5). 

The RTW page is used to set the real-time build options and then to start 
the building process of the RTW.DLL executable file. 

 

 

Fig. 5.5. Real Time Worshop tab in the Configuration Parameters page of 
the Simulation parameters option 

 
The system target file name is rtcon_tras_USB2.tlc. It manages the code 

generation process. The rtcon_tras_vc_us2b.tmf template make-file is devoted to 
C code generation using the Visual C++  compiler. 

 
Click Interface tab and next dialog page shown in Fig. 5.6 opens Note that 

External mode  is set and Transport layer is RT-CON tcpip. These options have to 
be set in the RTW and RT-CON environment. 
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Fig. 5.6 The Interface  tab in the Configuration parameters dialog box  

 
The Solver page appears when you select the Solver tab (Fig. 5.7 ). The 

Solver page is used to set the simulation parameters. Several parameters and 
options are available in the window. The Fixed-step size editable text box is set to 
0.002 (this is the sampling period given in seconds). 

 

 

The Fixed-step solver is obligatory for real-time applications. If 

you use an arbitrary block from the discrete Simulink library or a 

block from the driver library remember that different sampling 

periods must have a common divider.  

 
The Start time has to be set to 0. The solver has to be selected. In our 

example the fifth-order integration method  ode5 is chosen.  
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Fig. 5.7 Simulation parameters  

 
 

If all parameters are set properly you can start the DLL executable building 
process. For this purpose press the Build push button on the RTW page) or  

. 
Successful compilation and linking processes generate the following 

message: 
 
### Created Real-Time Windows Target module MySystem.rwd.  

### Successful completion of Real-Time Workshop build procedure for model: MySystem 

 
Otherwise, an error massage is displayed in the MATLAB command 

window. 
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6. Real-time model  in MATLAB version R2019b or newer 

 
The previous section described creating and running real-time models for 

older versions of Matlab.  
Since the R2019b version MathWorks has changed the look and the way of 

handling real-time models created in Simulink. This section  describes how to 
compile (build) and run a real-time model for these newer versions of Matlab. The 
Simulink Coder and  RT-CON toolboxes are used.  

Suppose we have designed the My_System model shown below in Fig. 5.1. 
This model was created as a copy of any real-time model contained in the 
INTECO software. 

 
 
To build the system that operates in the real-time mode the user has to: 
 

 create a Simulink model of the control system which consists of Device 
Driver and other blocks chosen from the Simulink library, 

 build the executable file compiling model, 

 start the real-time code. 
 

The description in this section contains only the differences from the 
previous versions of MATLAB. So reading the previous chapter carefully is 
necessary to understand the process of creating and running real time. 

 

6.2 Creating a model  

The simplest way to create a Simulink model of the control system is to use 
one of the models included in the INTECO’s software. as a template.  For 
example, click any model and save it as MySystem name. The MySystem 
Simulink model is shown in Fig. 5.1. 
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Fig. 6.1. My_System real-time model  

 
Now, you can modify the model. You get absolute freedom to develop your 

own controller. Remember to leave the Device driver block  in the window. This is 
necessary to work in the real-time environment.  

Though it is not obligatory, we recommend you to leave at least one scope. 
You need a scope to watch how the system runs.  

Creating your own model on the basis of an old example ensures that all-
internal options of the model are set properly. These options are required to 
compiling and linking in a proper way. See at Fig. 5.4 and  Fig. 6.3. To build real-
time code a special files shown in System target file and  Template file sections 
are required. These files are included to the INTECO’s software.   

You can apply most of the blocks from the Simulink library. However, some 
of them cannot be used (see Simulink Coder reference manuals). 

When the Simulink model is ready, click the Hardware Settings  option and 
next click the Code Generation  button. The window presented in Fig. 5.4 opens. 
Select Interface button to see the external mode options at Fig. 6.3. The system 
target file name is rtcon_tras_USB2.tlc. It manages the code generation process.  
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Fig. 6.2 Internal code generation options  

 
The rtcon_tras_vc_us2b.tmf template make-file is devoted to C code 

generation using the Visual C++  compiler.  
These files are examples and are of course different for different systems. 
 

 
 

Fig. 6.3. Interface of the external mode options 
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6.3 Code generation and the build process 

Once a model of the system has been designed the code for real-time 
mode can be generated, compiled, linked and downloaded into the processor.  

To compile (build) model click Monitor&Tune button and next Build for 
Monitoring option (see in Fig. 5.5). You can also use the keyboard by clicking 
CTRL+b keys. You will get the same effect in this way. 

 

Fig. 6.4. Building model 

 
Successful compilation and linking processes generate the following 

message: 
 

### Successful completion of build procedure for model: My_System 
### Simulink cache artifacts for 'My_System' were created in ‘..My_System.slxc'. Build 
process completed successfully 

 
Otherwise, an error massage is displayed in the Diagnostic Viewer window. 
 
 
To run the real-time model click the Control Panel option and window 

shown in Fig. 5.7 will appear. Next click Connect button and real-time starts. 
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Fig. 6.5 Connect with target  

 

 

 Do not use option Build Stand-Alone shown in Fig. 6.6 for 

compilation . 

 

 
 

. 
Fig. 6.6 Do not use this option !! 
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7. Controllers and real-time experiments 

 
In the following section we propose three PID controllers. It is possible to 

tune the parameters of the controllers without analytical design. Such approach to 
the control problem seems to be reasonable if a well identified model of the TRAS 
is not available. The effectiveness of the PID controllers discussed here is 
illustrated by control experiments.  

 



 

 

The experiments and corresponding to them measurements 

have been conducted by the use of the standard INTECO systems. 

Every new system manufactured and developed by INTECO can be 

slightly different to those standard devices. It explains why a user can 

obtain results that are not identical to these given in the manual. 

 

 

 

7.2 PID controllers 

 
One degree of freedom (1-DOF) control problem is the following. Design a 

controller that will stabilise the system, or make it follow a desired trajectory in one 
plane (one degree of freedom) while motion in the other plane is blocked 
mechanically or being controlled by another controller.  

If TRAS is free to move  in both axes we refer to the control as two degree 
of freedom (2-DOF). The four PID controllers for TRAS: PIDvv, PIDvh, PIDhv and 
PIDhh  (h-horizontal (azimuth), v-vertical (pitch)) are considered. The subscripts 
indicates the source-sink relation for the controller. Each control signal (Uv  and 
Uh)  is the sum of two controller outputs. For example, vertical control denoted 
later as Uv  is the sum of two output signals: PIDvv and PIDhv. The internal 
structure of each PID controller is shown in Fig. 7.13b. There are three 
parameters to be set for every controller: KP, Ki and Kd. The TRAS control in the 

vertical and horizontal planes requires setting altogether 12 (34) controller 
parameters. Saturation blocks introduce four additional Isat parameters: Ivvsat, Ivhsat, 
Ihhsat and Ihvsat, which are the limits of absolute values of the integrals of errors, 
and two: Uhmax and Uvmax parameters, which are the limits of absolute value of 
controls. These 18 (12+4+2) parameters have their default values.  

 
 

7.3 1-DOF controllers 

The task of the  one-degree-of-freedom (1-DOF) controllers is  to move the 
TRAS to an arbitrary position in the selected plane and to stabilise it there.  

 

7.3.1 Vertical  1-DOF control 

At the beginning we restrict our control objective to stabilising the system in 
the vertical plane only (using the included clamp). We reduce the original system 



TRAS User’s Manual -40- 
 

to the 1-DOF system by mechanically blocking its freedom to move in the 
horizontal plane. A corresponding  block diagram of the PID control system is 
presented in Fig. 7.1. 

 
  v  vd U v  v 

    1-DOF 

   SYSTEM PID vv 

 vd - desired pitch  

Fig. 7.1 1-DOF pitch control system 

 
The block diagram below shows the system in a more detailed form (Fig. 

7.2). Notice, that only the vertical part of the control system is considered. 
 

                                            

Kv v 
1/s 1/s 1/Jv 

fv DC-Motor with 
    main rotor 

1/s 1/s 

Mh 

v 

f h 

DC-motor with 
    tail rotor 

h(Uh,t) 

v(Uv,t) 

Uh 

Uv 

Rhv,h) 

h 
Fhh) 

Fvv) 

lh(v) 

lv 

v 

h 

h 

Mv 

Kh 

1/Jh(v) 

Fh 

Fv 

khv 

kvh 

Ghh,h) 

Gvv,v) 

 
 

Fig. 7.2 The block diagram 1-DOF  system (vertical plane) 

 

 

7.3.2 Real-time 1-DOF pitch control experiment 

 
Fix the TRAS device in the horizontal plane using the special plastic clamps 

delivered with TRAS. Set it in the neutral vertical position and wait until the all 
oscillations are finished. In the Tras Control Window double click the Reset 
Encoders block. 

Click the PID Pitch controller button and the model shown in Fig. 7.3 opens. 
Set all PID controller coefficients as: 7918.0 and  3532.0  0339.0  dip KKK . Also set 

saturation of the integral part of the controller to 1.1. The reference signal choose 
square with amplitude equal to 0.2 [rad] and frequency set 1/60 [Hz]. Build the 
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model and click on the Simulation/Connect to target option and Start real-time 
code option. 

  

  1-DOF Pitch PID Control 
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Fig. 7.3  Real-time model for pitch control 

 
The results of the experiment are shown in Fig. 7.4.  
 

 

Fig. 7.4 Results of PID pitch control 

 
The details of  the above experiment are shown in Fig. 7.5 and Fig. 7.6. 
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Fig. 7.5 The control 
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Fig. 7.6 The pitch position and reference signal 
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7.3.3 Horizontal 1-DOF control 

 In the next experiment we will apply stabilising PID controller in the 
horizontal plane. We block the system in one axis so that it cannot move in the 
vertical plane (using the included fixing rectangle).. A corresponding block diagram 
of the control system is shown in Fig. 7.7, and in a more detailed form in Fig. 7.8. 
 

 

 hd U 
h  h 

1-DOF 

SYSTEM 
PID h

h 

 h 

 hd  -desired  azimuth 
 

Fig. 7.7 1-DOF control closed-loop system (azimuth stabilisation) 

 
Notice that only the ‘horizontal’ part of the control system is considered. 
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Fig. 7.8 The block diagram of 1-DOF  system (horizontal plane) 

 

7.3.4 Real-time 1-DOF azimuth control experiment 

 
Fix the TRAS device in the vertical plane using the special fixing  rectangle 

delivered with TRAS. Set it in the zero position and click on the Reset Encoders 
block in Tras Control Window. 

Click  PID Azimuth controller and the model shown in Fig. 7.9 opens. Set all 
PID controller coefficients as 4008.1 and  0115.0  9758.1  dip KKK . Build the 
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model and click on the Simulation/Connect to target and Start real-time code 
options. 
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Fig. 7.9  Real-time model for PID azimuth control 

 
The results of the experiment are shown in Fig. 7.10. Notice, that control 

similar to the pitch control changes with a high frequency.. 
 

 

Fig. 7.10 Results of PID azimuth control 

 
The details of the above experiment are shown in Fig. 7.11 and Fig. 7.12. 
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Fig. 7.11  Control 
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Fig. 7.12 The azimuth position and reference signal 
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7.4 2-DOF PID controller  

The structure of the  cross-coupled  multivariable PID controller is shown in 
Fig. 7.13. 

 
 a) 

 

 v 

U h  h 

U v 

PID hh 

PID vv 

PID h v 

PID vh 

 
 

 b) 
 

U  

saturation  block 

           U max 

saturation  block  I sat 

Ki/ S 

S K d 

Kp 

 
 

Fig. 7.13 Structure of the cross-coupled PID controller 

a) general  b) single PID block 
 

The controller is described by the equations given bellow. 
  v vd v  ,  

  h hd h  , 

where:  v h,  are errors of vertical (pitch) and horizontal angle (azimuth), 

 vd hd,  are reference values of vertical and horizontal angles,  v h,  are vertical 

and horizontal angles. 
 

The integrators are described by the following equations: 

I t K dtvv ivv v

t

( )  
0

, for I I Ivvsat vv vvsat    

if I I then I Ivv vvsat vv vvsat( )  , if I I then I Ivv vvsat vv vvsat( )    ,  

I t K dtvh ivh v

t

( )  
0

, for I I Ivhsat vh vhsat        

if I I then I Ivh vhsat vh vhsat( )  , if I I then I Ivh vhsat vh vhsat( )    ,  

I t K dthv ihv h

t

( )  
0

,  for I I Ihvsat hv hvsat    
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if I I then I Ihv hvsat hv hvsat( )  , if I I then I Ihv hvsat hv hvsat( )    ,  

I t K dthh ihh h

t

( )  
0

,  for I I Ihhsat hh hhsat    

if I I then I Ihh hhsat hh hhsat( )  , if I I then I Ihh hhsat hh hhsat( )    , 

 
where:   K K K Kivv ivh ihv ihh, , ,   are gains of the  I  parts, 

 I I I Ivvsat vhsat hvsat hhsat, , ,  are saturation’s of the integrators. 

 
Finally, vertical and horizontal controls are: 

U K I t K
d

dt
K I t K

d

dtv pvv v vv dvv

v

pvh h vh dvh

h
     





( ) ( ) ,     for   U U Uv v vmax max  

if U U thenU Uv v v v( )max max  ,  if U U thenU Uv v v v( )max max    ,  

U K I t K
d

dt
K I t K

d

dt
h phv h hv dhv

v
phh h hh dhh

h     





( ) ( ) ,     for   U U Uh h hmax max  

if U U thenU Uh h h h( )max max  ,  if U U thenU Uh h h h( )max max    ,  

 
Where: 
 K K K K K K K Kpvv pvh phv phh dvv dvh phv phh, , , , , , ,   are parameters of the controllers, 

 U Uv hmax max,   are the saturation limits of the vertical and horizontal controls. 

 

 

 

 

7.4.1 Simple PID controller 

 The simple PID controller controls the vertical and horizontal movements 
separately. In this control system  influence of one rotor on the motion in the other  
plane is  not compensated by the controller structure. The system is not de-
coupled. The control system of this kind is presented in Fig. 7.14. The controller 
structure is presented in Fig. 7.15. 
 

 PID
simple

v

h Uh

Uv

   2-DOF

  SYSTEM

v

h
hd

vd
 

 

Fig. 7.14 The block diagram of 2-DOF control system with a simple PID-
controller 
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Fig. 7.15 The block diagram of the simple PID-controller 

 

7.4.2 Cross-coupled PID controller 

 
 The cross-coupled  PID controller controls the system in the pitch and 
azimuth  planes. In this control system  influence of one rotor on the motion in the 
other plane can be compensated by the cross-coupled  structure of the controller. 
The control system is shown in  Fig. 7.16. The cross-coupled PID controller 
structure is shown in Fig. 7.17. 
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Fig. 7.16 The block diagram of  the 2-DOF control system with the cross-
coupled PID-controller 
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Fig. 7.17 The block diagram of  the cross-coupled  PID controller 
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7.4.3 Real-time 2-DOF control with the cross-coupled PID  controller 

 
The task in this case is the same as in the previous sections but TRAS is 

not mechanically blocked,  and therefore it is free to move in  both planes. 
Click  the 2-DOF controller button and the model shown in Fig. 7.18 opens. 

Set the coefficients of the crossed PID controllers as follows: 
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Fig. 7.18 Real-time model of the 2-DOF control task 

 
Click “4 PIDs” block and set the controller parameters as in Fig. 7.19. 
 

 
 

Fig. 7.19. Coeffitients of the cross-coupled PID controller 
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Also set the reference signals as follows: the reference azimuth signal as 
square wave with 0.4 [rad] amplitude and 1/50 [Hz] frequency,  and the reference 
signal for azimuth as sin wave with the amplitude 0.1 and frequency 1/60 [Hz]. 

Build the model and click on the Simulation/Connect to target option and 
Start real-time code option.  

The results of the experiment are shown in Fig. 7.20.   

 

 
 

Fig. 7.20 Results of the 2-DOF control with the cross-coupled PID controller 
(azimuth and pitch positions) 
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8. PID controller parameters tuning 

 
There are several methods of designing  closed-loop control systems. In 

order to obtain optimal (or sub-optimal) settings of parameters for the PID 
controllers the so-called tuning methods may be used. The following tuning 
methods can be distinguished: 

 Tuning based on the time or frequency responses. An experiment is 
performed with the process and with the model of the process. Tuning rules 
are based on time or frequency  responses of the system. This method is not 
used for TRAS. 

 More general method is the minimisation of a objective function. The idea of 
this method for TRAS with a PID controller  is presented in Fig. 8.1. 

 
 

um m 

+ 

- 

ym simulation 

model of 
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 CONTROLLER 

ymd 

 CRITERION       
),( mm uQ   

          PROCEDURE 
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Dip

   

new Kp,Ki,Kd 

 
 

Fig. 8.1.Schematic diagram of  the PID parameters tuning  

 
 
In the case of TRAS the following criterion is used to tune the PID 

parameters for the all experiments described in the previous section  

  dtuQ
kT

o

vvh   1.04
222   

where: 80kT  [s] – simulation time , 
h - azimuth position error,  

v  - pitch 

position error, 
vu - pitch control. The 0.1 coefficient is the value of the pitch control 

which keeps the beam in horizontal position. 
Note, that selection of the criterion is a rather complicated and difficult task. 

It is closely related to  the project assumptions. The project assumptions consist a 
basis for its construction. 

The TRAS Toolbox includes the m-files to perform optimisation procedures 
of PID controller parameters. These m-files are as follows: 

 pid_azimuth.m 

 pid_pitch.m 

 pid_cross.m 

 pid_simple.m. 



TRAS User’s Manual -52- 
 

Each of these files uses his own simulation model and the criterion m-file in 
optimisation process. See the body of these files to learn how the optimisation 
procedure is performed. 
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9. Description of the CTRAS class properties 

 
The CTRAS is a MATLAB class, which gives the access to all the features 

of the RTDAC/USB2 board equipped with the logic for the Twin Rotor 
Aerodynamical System model. The RTDAC/USB2 board is an interface between 
the control software executed by a PC computer and the power-interface 
electronic of the TRAS model. The logic on the board contains the following 
blocks: 

 incremental encoder registers – two 32-bit registers to measure the 
positions of the incremental encoders. There are two identical encoder 
inputs, that are applied to measure the azimuth and pitch angles; 

 incremental encoder resets logic. The incremental encoders generate 
different output waves when the encoder rotates clockwise and counter-
clockwise. The encoders are not able to detect the reference (“zero”) 
position. To determine the “zero” position the incremental encoder registers 
have to be set to zero by the computer program; 

 PWM generation blocks – generates the Pulse-Width Modulation output 
signals applied to control the azimuth and pitch DC drives. Simultaneously 
the direction signals and the brake signals are generated to control the 
power interface module. The PWM prescalers determines the frequencies of 
the PWM wave; 

 power interface thermal flags –the thermal flags can be used to disable the 
operation of the overheated DC motors; 

 interface to the on-board analog-to-digital converter. The A/D converter is 
applied to measure the output voltages from the tachogenerator. 

 
All the parameters and measured variables from the RTDAC/USB2 board 

are accessible by appropriate properties of the CTRAS class. 
In the MATLAB environment the object of the CTRAS class is created by 

the command: 

object_name = CTRAS; 

The get method is called to read a value of the property of the object: 

property_value = get( object_name, ‘property_name’ ); 

The set method is called to set a new value of the given property: 

set( object_name, ‘property_name’, new_property_value ); 

The display method is applied to display the property values when the 
object_name is entered in the MATLAB command window. 

 
This section describes all the properties of the CTRAS class. The 

description consists of the following fields: 
 

Purpose Provides short description of the property 

Synopsis Shows the format of the method calls 

Description Describes what the property does and the 
restrictions subjected to the property 

Arguments Describes arguments of the set method 
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See Refers to other related properties 

Examples  Provides examples how the property can be used 

 

9.2 BitstreamVersion 

Purpose:   Read the version of the logic stored in the 

RTDAC/USB2 board. 

Synopsis:   Version = get( tr, ‘BitstreamVersion’ ); 

Description:   The property determines the version of the logic design for 
the RTDAC/USB2 board. The TRAS models may vary and the 
detection of the logic design version makes it possible to check if 
the logic design is compatible with the physical model. 

 

Example: Create the CTRAS object: 
 tr = CTRAS; 
 Display their properties by typing the command: 
 tr 

 
Type:               CTRAS Object 

Bitstream ver.:     x40F 

Encoder:            [ 2  65517 ][bit] 

Reset Encoder:      [ 0  0 ] 

Input voltage:      [ -0.01  -0.02 ][V] 

PWM:                [ 0  0 ] 

PWM Prescaler:      [ 1  1 ] 

PWM Thermal Status: [ 0  0 ] 

PWM Thermal Flag:   [ 1  1 ] 

Angle:              [ 0.003068  -0.029146 ][rad] 

RPM:                [ -19  -9 ][RPM] 

Time:               753.7 [sec] 

 

9.3 Encoder 

Purpose:   Read the incremental encoder registers. 
 

Synopsis:   enc = get( tr, ‘Encoder’ ); 
 

Description:  The property returns two digits. They are equal to the number of 
impulses generated by the corresponding encoders. The encoder 
counters are 16-bit numbers so the values of this property is from –
32768 to 32767. When an encoder counter is reset the value is set 
to zero. The first encoder register corresponds to the azimuth 
position and the second register corresponds to the pitch position. 

 The incremental encoders generate 4096 pulses per rotation. The 
values of the Encoder property should be converted into physical 
units. 

 

See:  ResetEncoder, Angle, AngleScaleCoeff 
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9.4 Angle 

Purpose:   Read the angle of the encoders. 
 

Synopsis:   angle_rad = get( tr, ‘Angle’ ); 
 

Description:  The property returns two angles of the corresponding encoders. 
The first value corresponds to the azimuth and the second to the 
pitch position. To calculate the angle the encoder counters are 
multiplied by the values defined as the AngleScaleCoeff property. 
The angles are expressed in radians. 

 

See:  Encoder, AngleScaleCoeff 
 

9.5 AngleScaleCoeff 

 

Purpose:   Read the coefficients applied to convert the encoder counter values 
into physical units. 

 

Synopsis:   scale_coeff = get( tr, ‘AngleScaleCoeff’ ); 
 

  Description:  The property returns two digits. They are equal to the coefficients 
applied to convert encoder impulses into radians. The incremental 
encoders generate 4096 pulses per rotation so the coefficients are 
equal to 2*pi/4096. 

 

See:  Encoder, Angle 
 

9.6 PWM 

 

Purpose:   Set the direction and duty cycle of the PWM control waves. 
 

Synopsis:   PWM = get( tr, ‘PWM’ ); 
  set( tr, ‘PWM’, [ NewAzimuthPWM NewPitchPWM ] ); 
 

Description:  The property determines the duty cycle and direction of the PWM 
control waves for the azimuth and pitch DC drives. The PWM waves 
and the direction signals are used to control the DC drives so in fact 
this property is responsible for the DC motor control signals. The 
NewAzimuthPWM and NewPitchPWM variables are scalars in the 
range from –1 to 1. The value of –1, 0.0 and +1 mean respectively: 
the maximum control in a given direction, zero control and the 
maximum control in the opposite direction to that defined by –1. 

The PWM wave is not generated if the corresponding 

thermal flag is set and the power amplifier is overheated. 
 

See: PWMPrescaler,  Therm, ThermFlag 

Example: set( tr, ‘PWM’, [ -0.3 0.0 ] ); 
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9.7 PWMPrescaler 

 

Purpose:   Determine the frequency of the PWM waves. 
 

Synopsis:   Prescaler = get( tr, ‘PWMPrescaler’ ); 
 set( tr, ‘PWMPrescaler’, [ NewAzimuthPrescaler NewPitchPrescaler ] 

); 
 

Description:  The prescaler values can vary from 0 to 63. The 0 value generates 
the maximal PWM frequency. The value 63 generates the minimal 
frequency. The first prescaler value is responsible for the azimuth 
PWM frequency and the second for the pitch PWM frequency. The 
frequency of the generated PWM wave is given by the formula: 

PWMfrequency = 40MHz / 1023 / (Prescaler+1) 
 

 

See: PWM 
 
 

9.8 Stop 

 

Purpose:   Sets the control signal to zero. 
 

Synopsis:   set( tr, ‘Stop’ ); 
 

Description:  This property can be called only by the set method. It sets the 
zero control of the DC motors and is equivalent to the set(tr, ‘PWM’, 
[ 0 0 ] ) call. 

 

See: PWM 
 

9.9 ResetEncoder 

 

Purpose:   Reset the encoder counters. 
 

Synopsis:   set( tr, ‘ResetEncoder’, ResetFlags ); 
 

Description:   The property is used to reset the encoder registers. The 
ResetFlags is a 1x2 vector. Each element of this vector is responsible 
for one encoder register (the first value controls the reset signal of the 
azimuth encoder and the second controls the reset of the pitch 
encoder). If the reset flag is equal to 1 the appropriate register is set to 
zero. If the flag is equal to 0 the appropriate register counts encoder 
impulses.  

 

See: Encoder 
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Example: To reset only the first encoder register execute the command: 
 set( tr, ‘ResetEncoder’, [ 1 0 ] ); 

 

9.10 Voltage 

 

Purpose:   Read two voltage values. 
 

Synopsis:   Volt = get( tr, ‘Voltage’ ); 
 

Description:  Returns the voltage of two analog inputs. The analog inputs are 
applied to measure the output of the tachogenerators. 

 

See: RPM 
 
 

9.11 RPM 

 

Purpose:   Read velocity of the propelers. 
 

Synopsis:   RPM = get( tr, ‘RPM’ ); 
 

Description:  Returns the velocities of the propellers. The property contains two 
values. The first one is equal to the azimuth propeller velocity. The 
second one is equal to the pitch propeller velocity. 

 

See: Voltage, RPMScaleCoeff 
 
 

9.12 RPMScaleCoeff 

 

Purpose:   Read the coefficients applied to convert the tachgenerator voltage 
values into physical units. 

 

Synopsis:   scale_coeff = get( tr, ‘RPMScaleCoeff’ ); 
 

Description:  The property returns two digits. They are equal to the coefficients 
applied to convert tachogenerator voltages into RPMs. 

 

See:  Voltage, RPM 
 
 

9.13 Therm 

 

Purpose:   Read thermal status flags of the power amplifiers. 
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Synopsis:   Therm = get( tr, ‘Therm’ ); 
 

Description:  Returns the thermal flag of the power amplifier. When the 
temperature of a power amplifier is too high the corresponding flag is 
set to 1. The property contains two flags. The first one corresponds to 
the thermal status of the power interface for the azimuth DC drive. 
The second one corresponds to the thermal status of the pitch power 
amplifier. 

 

See: ThermFlag 
 
 

9.14 ThermFlag 

 

Purpose:   Control an automatic power down of the power amplifiers. 
 

Synopsis:   ThermFlag = get( tr, ‘ThermFlag’ ); 
  set( tr, ‘ThermFlag’, [ NewAzimuthThermFlag 

NewPitchThermFlag ] ); 
 

Description:  If the NewAzimuthThermFlag or/and NewPitchThermFlag are equal 
to 1 the azimuth or/and DC motors are not excited by from the PWM 
waves when the corresponding power interfaces is overheated. 

 

See: Therm 
 
 

9.15 Time 

 

Purpose:   Return time information. 
 

Synopsis:   T = get( tr, ‘Time’ ); 
 

Description:   The CTRAS object contains the time counter. When a CTRAS 
object is created the time counter is set to zero. Each reference to the 
Time property updates its value. The value is equal to the number of 
milliseconds which elapsed since the object was created. 
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9.16 Quick reference table 

 

Property name 
Op

eration
* Description 

BaseAddress R 
Read the base address of the 

RTDAC/USB2 board  

BitstreamVersio
n 

R 
Read the version of the logic design for 

the RTDAC/USB2 board 

Encoder R Read the incremental encoder registers 

Angle R Read the angles of the encoders 

AngleScaleCoef
f 

R 
Read the coefficients applied to convert 

encoder positions into radians 

PWM 
R+

S 
Read/set the parameters of the PWM 

waves 

PWMPrescaler 
R+

S 
Read/set the frequency of the PWM 

waves 

Stop S Set the control signal to zero 

ResetEncoder 
R+

S 
Reset the encoder counters or read the 

reset flags 

Voltage R Read the input voltages 

RPM R Read velocities of the propelers 

RPMScaleCoeff R 
Read the coefficients applied to convert 

tachogenerator voltages into RPMs 

Therm R 
Read the thermal flags of the power 

amplifiers 

ThermFlag 
R+

S 
Read/set the automatic power down flags 

of the power amplifiers 

Time R Read time information 

 R – read-only property, S – allowed only set operation, R+S –property may be 
read and set 

 

9.17 CTRAS Example 

 
To familiarise a reader with the CTRAS class this section presents an 

M-file example that uses the properties of the CTRAS class to measure the 
static characteristics of the DC motor. The static characteristics is a diagram 
showing the relation between DC motor control signal and the velocity of the 
propellers. The M-file changes the control signal and waits until the system 
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reaches a steady-state. The velocity of the propeller is proportional to the 
voltage generated by the tacho-generator. 

The M-file is written in the M-function form. The name of the M-function 
is TRAS_PWM2RPM. The body of this function is given below. The comments 
within the function describe the main measurement stages. 

The function requires five parameters: 

 SelectRotor – selects the propeller used during the measurements. Available 
values are: 'A' for azimuth propeller, 'P' for pitch propeller and 'AP' for both 
propellers. 

 CtrlDirection - a string that selects how to change the control value. The 'A' 
string causes the control is changed in ascending manner (from minimal to 
maximal control value), the 'D' string causes the control is changed in 
descending order (from maximal to minimal value) and the 'R' string causes 
reverse double changes (from minimal to maximal and after that from maximal 
to minimal control values), 

 MinControl, MaxControl- minimal and maximal control values. The control 
values must be set within the –1.0 to +1.0 range, 

 NoOfPoints - number of characteristic points within the range where changes 
the control signal. The exact number of points of the characteristics declared 
by this parameter is enlarged to two points namely at the ends of the control 
range. 

 
function ChStat = ... 

         TRAS_PWM2RPM( SelectRotor, CtrlDirection, ... 

         MinControl, MaxControl, NoOfPoints ) 

 

SelectRotor   = lower( SelectRotor ); 

CtrlDirection = lower( CtrlDirection ); 

NoOfPoints    = max( 1, NoOfPoints-1 ); 

 

% Control step 

Step = (MaxControl-MinControl) / NoOfPoints; 

 

switch CtrlDirection 

  case 'a'    

    Ctrl = MinControl:Step:MaxControl; 

  case 'd'    

    Ctrl = MaxControl:-Step:MinControl; 

  case 'r'    

    Ctrl = [ MinControl:Step:MaxControl MaxControl:-Step:MinControl]; 

  otherwise  % This should not happen 

    error('The CtrlDirection must be ''A'',''D'' or ''R''.') 

end  

 

switch SelectRotor 

  case 'a'    

    ACtrl = Ctrl; PCtrl = 0*Ctrl; 

  case 'p'    

    ACtrl = 0*Ctrl; PCtrl = Ctrl; 

  case { 'ap', 'pa' }    

    ACtrl = Ctrl; PCtrl = Ctrl; 

  otherwise  % This should not happen 

    error('The SelectRotor must be ''A'', ''P'' or ''AP''.') 
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end  

 

FigNum = figure( 'Visible', 'on', ... 

                 'NumberTitle', 'off', ... 

              'Name', 'Rotor velocity vs. PWM characteristic', ... 

                 'Menubar', 'none' ); 

tr = ctras; 

ret = []; 

for i=1:length(Ctrl) 

  set( tr, 'PWM', [ACtrl(i) PCtrl(i)] ); 

  pause( 10 ) 

  ret(i,1)   = Ctrl(i); 

  AuxVolt = [0 0]; 

  for j=1:10 

    AuxVolt = AuxVolt + get( tr, 'RPM' ); 

  end 

  ret(i,2:3) = AuxVolt/10; 

  AuxVolt = 0; 

  for j=1:10 

    AuxVolt = AuxVolt + get( tr, 'AD', 10 ); 

  end 

  ret(i,4) = AuxVolt/10; 

  plot( ret(:,1), ret(:,2:3), 'x' );  

  hold on; plot( ret(:,1), ret(:,2:3) ); hold off; grid 

  title( 'RPM vs. PWM' ); xlabel('PWM control value'); ylabel( 'Rotor 

velocity [RPM]' ); 

end 

 

ChStat.Control = ret(:,1); 

ChStat.RPM     = ret(:,2:3); 

ChStat.Force   = ret(:,4); 

 

% Switch off the control  

set( tr, 'PWM', [0 0] ); 

% Set return variable 

ChStat.Control = ret(:,1); 

ChStat.RPM     = ret(:,2:3); 

ChStat.Force   = ret(:,4); 

 

% Switch off the control signals 

set( tr, 'PWM', [0 0] ); 

 
The diagram generated by the call: 

 tras_pwm2rpm( 'ap', 'r', -0.5, 0.5, 11 ) 
is shown below. Two curves represent static characteristics of the 

azimuth and pitch propellers. 
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Fig. 9.1 Static characteristics 

 


